文章摘要
吕金东,张丽媛,虞娜,邹洪涛,张玉玲,张玉龙.水氮耦合对设施土壤N2O和NO排放的影响[J].农业环境科学学报,2021,40(6):1366-1376.
水氮耦合对设施土壤N2O和NO排放的影响
Interactive effects of irrigation and nitrogen on N2O and NO emissions from greenhouse soil
投稿时间:2020-10-23  
DOI:10.11654/jaes.2020-1217
中文关键词: 水氮耦合  设施土壤  N2O排放  NO排放  番茄产量  功能基因
英文关键词: interaction of irrigation and nitrogen fertilization  greenhouse soil  N2O emission  NO emission  tomato yield  functional genes
基金项目:辽宁省重点研发计划项目(2020JH2/10200018);国家重点研发计划项目(2016YFD0300807);国家自然科学基金项目(41401322)
作者单位E-mail
吕金东 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866  
张丽媛 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866  
虞娜 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866 sausoilyn@syau.edu.cn 
邹洪涛 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866  
张玉玲 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866  
张玉龙 沈阳农业大学土地与环境学院, 农业部东北耕地保育重点实验室, 发改委土肥资源高效利用国家工程实验室, 沈阳 110866  
摘要点击次数: 1279
全文下载次数: 1090
中文摘要:
      为实现设施生产水氮高效利用及N2O和NO减排,基于连续7 a的设施水氮定位试验,采用密闭静态箱法,分别对番茄生长季的N2O和NO排放进行田间原位同步观测。通过灌水下限(土壤水吸力W1、W2和W3分别为25、35 kPa和45 kPa)和施氮量(N1、N2和N3分别为75、300 kg·hm-2和525 kg·hm-2)两因素三水平随机区组设计,研究了水氮耦合对设施土壤N2O和NO排放特征的影响。结果表明,N2O和NO排放峰值出现在施肥和灌溉后,峰值期的排放通量表现为N2O高于NO,但NO峰值持续时间较长。水分、施氮量和水氮交互作用对设施土壤N2O、NO总累积排放量均有极显著影响,水氮耦合效应使W1N1处理的NO总累积排放量、W2N1处理的N2O和N2O+NO总累积排放量最低,且均与其他处理差异显著。水分、施氮量和水氮交互效应对番茄产量影响效力表现为灌水下限>施氮量>水氮交互。与W1N1、W1N2、W1N3相比,W2N1处理的番茄产量分别显著增加48.92%、50.69%和17.82%。水氮耦合效应使W2N1处理单产N2O和NO累积排放量最低(P<0.01),分别比其他处理降低40.00%~78.57%和21.43%~60.71%。冗余分析表明,N2O和NO排放通量与铵态氮含量、硝态氮含量、amoA-AOA和nirK基因丰度均呈显著正相关关系。综合设施蔬菜经济和环境效应,配施有机肥条件下,灌水下限35 kPa和施氮量75 kg·hm-2的水氮管理更有助于设施土壤N2O和NO减排及产量保证。
英文摘要:
      To optimize irrigation and nitrogen fertilization, and reduce N2O and NO emissions in greenhouses, a tomato field experiment was conducted over seven consecutive years to observe the synchronous emissions of N2O and NO using the closed, static box method. The effects of the lower limits of irrigation(W1: 25 kPa, W2: 35 kPa, W3: 45 kPa), and nitrogen application rate(N1: 75 kg·hm-2, N2: 300 kg·hm-2, N3: 525 kg·hm-2)on N2O and NO emissions were studied by using two factors and three levels in a randomized blocks design. The peak periods of N2O and NO emissions occurred after fertilization and irrigation. The N2O emission was higher than that of NO during peak periods, but the duration of the peak of NO emission was longer. Irrigation, nitrogen fertilization, and their interaction had a significant effect on the total cumulative(N2O + NO)emission. The interaction of irrigation and nitrogen resulted in the lowest, total cumulative emission of NO in the W1N1 treatment, and the lowest total cumulative emission of N2O and(N2O+NO)in the W2N1 treatment, which were significantly different from the other treatments. The effect of the irrigation lower limit on the yield of tomatoes was greater than the effect of nitrogen fertilization, which was greater than the interaction of irrigation and nitrogen. Compared with W1N1, W1N2, and W1N3, the tomato yield in the W2N1 treatment increased significantly by 48.92%, 50.69% and 17.82%, respectively. The interaction of irrigation and nitrogen resulted in the lowest yield-scaled N2O and NO in the W2N1 treatment(P<0.01), which were 40.00%~78.57% and 21.43%~60.71% lower than in other treatments, respectively. According to a redundancy analysis, N2O and NO emission fluxes were significantly positively correlated with ammonium nitrogen content, nitrate nitrogen content, amoA-AOA, and nirK gene abundance. Considering the economic and environmental effects of greenhouse vegetables, when combined with organic fertilizer, a lower irrigation limit of 35 kPa, and a nitrogen application rate of 75 kg·hm-2 were conducive to a reduction in N2O and NO emission, with yield assurance.
HTML    查看全文   查看/发表评论  下载PDF阅读器