文章摘要
荔枝剪枝堆肥和蚯蚓粪作为巨大普里斯特氏菌载体的研究
Study on lychee pruning compost and vermicompost as carrier of Priestia megaterium
投稿时间:2023-03-27  修订日期:2023-05-19
DOI:
中文关键词: 荔枝剪枝堆肥  蚯蚓粪  载体  巨大普里斯特氏菌  有效活菌数
英文关键词: Lychee pruning compost  Vermicompost  Carrier  Priestia megaterium  Viable count
基金项目:
作者单位邮编
余小兰中国热带农业科学院环境与植物保护研究所
海南儋州热带农业生态系统国家野外科学观测研究站 
571101
李勤奋中国热带农业科学院环境与植物保护研究所
海南儋州热带农业生态系统国家野外科学观测研究站 
李光义中国热带农业科学院环境与植物保护研究所 
张俏燕中国热带农业科学院环境与植物保护研究所 
李晓亮* 中国热带农业科学院热带作物品种资源研究所/儋州菜田土壤海南省野外科学观测研究站 571737
摘要点击次数: 132
全文下载次数: 0
中文摘要:
      【目的】为探讨荔枝茎秆堆肥与蚯蚓粪替代草炭作为巨大普里斯特氏菌载体的可行性。【方法】以荔枝剪枝堆肥、蚯蚓粪和草炭为原料构建6种微生物载体(ST1、ST2、ST3、ST4、ST5、ST6,质量比分别为6:2:2、4:2:4、2:2:6、6:3:1、4:3:3、2:3:5),以草炭为对照,巨大普里斯特氏菌为目标微生物,动态监测载体中有效活菌数,获得适宜巨大普里斯特氏菌存活的载体;在此基础上,分别设置含水量(20%、30%、40%)、温度(20、30、40、50 ℃)和接种浓度(106、107、108 cfu·mL-1),动态监测载体中有效活菌数,优化载体含水量、温度和接种浓度。【结果】随着培养时间的延长,各载体中活菌数均呈先降低后升高的趋势,其中ST2、ST5载体长期培养后活菌数高,且草炭添加量低,是适宜的巨大普里斯特氏菌载体。随着载体含水量、温度的升高,培养60 d后的ST2和ST5载体活菌数均呈先升高后降低的趋势,在30%含水量(ST2: 2.46×108 cfu·g-1、ST5: 1.81×108 cfu·g-1)以及30 ℃(ST2: 3.44×108 cfu·g-1、ST5: 1.87×108 cfu·g-1)、40 ℃(ST2: 8.50×107 cfu·g-1、ST5: 7.13×107 cfu·g-1)温度下的活菌数最高。此外,各培养时期的载体活菌数均随着接种浓度的升高而升高,培养60 d后,ST2、ST5载体活菌数分别达3.63×108 cfu·g-1、3.33×108 cfu·g-1。【结论】载体ST2和 ST5适宜代替草炭作为巨大普里斯特氏菌的载体,且在30%载体含水量、30~40℃温度和108 cfu·mL-1接种浓度下效果最佳。该研究为节约草炭资源和农业废弃物的资源化利用提供了技术支持。
英文摘要:
      In order to study the feasibility of lychee pruning compost and vermicompost to replace turf as carrier of Priestia megaterium. In present experiment, we comprised six mixed carriers to the target bacteria of Priestia megaterium by using different ratio of lychee pruning compost, vermicompost and turf, and ranked as ST1, ST2, ST3, ST4, ST5, ST6 with mass ratio of 6:2:2, 4:2:4, 2:2:6, 6:3:1, 4:3:3, 2:3:5. The turf (CK) was used as control. We dynamically monitored the viable counts in carriers at different cultivation time, and then obtaining the mixed carrier formula suitable for the survival of Priestia megaterium. On this basis, we set water content (20%, 30%, 40%), temperature (20, 30, 40, 50 ℃) and inoculation concentration (106, 107, 108 cfu·mL-1), and dynamically monitored the living bacteria, and then optimize the water content, temperature and inoculation concentration of carriers. The results showed that viable count of each carrier decreased first and then increased with the cultivation time. ST2 and ST5 both were the optimal carrier of Priestia megaterium for the high viable counts after long term of cultivation and low turf addition. After 60 days of cultivation, with the increase of water content and temperature of the carrier, viable count increased first and then decreased, and reached the highest value at 30% water content (ST2: 2.46×108 cfu·g-1, ST5: 1.81×108 cfu·g-1) and 30 ℃ (ST2: 3.44×108 cfu·g-1, ST5: 1.87×108 cfu·g-1) and 40 ℃ (ST2: 8.50×107 cfu·g-1, ST5: 7.13×107 cfu·g-1) respectively. Moreover, the viable count in carrier at each cultivation stage increased with inoculation concentrations, the viable counts of ST2 and ST5 reached 3.63×108, 3.33×108 cfu·g-1 respectively after 60 days of cultivation. The mixed carriers ST2 and ST5 were most suitable to replace turf as the carrier of Priestia megaterium, and the optimal conditions for the carriers were 30 % water content, 30~40 ℃ temperature, and 108 cfu·mL-1 inoculation concentration. This study provided technical support for turf saving and the utilization of agricultural wastes.
HTML    View Fulltext   查看/发表评论  下载PDF阅读器