文章摘要
机器学习在生态环境损害鉴定评估领域的应用前景
Prospects of machine learning in the field of ecological environmental damage identification and assessment
投稿时间:2023-10-30  修订日期:2023-11-15
DOI:
中文关键词: 生态环境损害鉴定评估  机器学习  图像识别  自然语言处理
英文关键词: ecological damage assessment  machine learning  image recognition  natural language processing
基金项目:中央级公益性科研院所基本科研业务费专项(PM-zx703-202204-070; PM-zx703-202305-270; PM-zx703-202305-189)
作者单位邮编
武子豪 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 510655
吴礼滨 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
洪伟 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
丁泽聪 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
易皓 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
张晓园 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
曾子龙 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 
崔恺* 生态环境部华南环境科学研究所 华南环境损害司法鉴定中心生态环境损害评估研究中心 510655
摘要点击次数: 49
全文下载次数: 0
中文摘要:
      生态环境损害鉴定评估工作是环境行政处罚的重要依据,随着近年来生态环境损害案件的不断发生,损害鉴定工作流程复杂、案件资料分析工作量大、数据缺失严重等问题不断显现,如现场勘察耗时耗力、污染物溯源困难、基线不清、损害赔偿金额难以确定等。为解决这些问题,本文探讨了机器学习在生态环境损害鉴定评估中的应用前景。近几年,机器学习凭借其强大的计算能力,已在数据挖掘、图像识别和自然语言处理等领域发挥了重要作用,通过综述机器学习在上述领域的已有进展,结合生态环境损害鉴定评估总体工作流程,深入探究了机器学习在损害鉴定评估中的应用前景,分析机器学习在鉴定评估工作中的挑战和局限性,指明机器学习的应用可以提高损害鉴定评估的工作效率,促进损害鉴定评估有序化、系统化发展。
英文摘要:
      Ecological environment damage appraisal and assessment work is an important basis for environmental administrative punishment, with the continuous occurrence of ecological environment damage cases in recent years, the complexity of damage appraisal workflow, the workload of analyzing case information, and the seriousness of the data missing problems continue to emerge, such as time-consuming and exhausting on-site investigation, difficulty in traceability of pollutants, unclear baseline, and difficulty in determining the amount of damage compensation. In order to solve these problems, this paper explores the prospects for the application of machine learning in the appraisal and evaluation of ecological environmental damage. In recent years, machine learning has played an important role in the fields of data mining, image recognition and natural language processing by virtue of its powerful computational ability. By reviewing the existing progress of machine learning in the above fields, combining with the overall workflow of ecological environment damage appraisal with an in-depth exploration of the prospects for the application of machine learning in damage appraisal, analyzes the challenges and limitations of the application of machine learning in appraisal, points out the challenges and limitations of the application of machine learning, and indicates that the application of machine learning in the appraisal is very difficult to solve these problems. It also analyzes the challenges and limitations of machine learning in the appraisal work, and indicates that the application of machine learning can improve the efficiency of damage appraisal and promote the orderly and systematic development of damage appraisal.
HTML    View Fulltext   查看/发表评论  下载PDF阅读器