文章摘要
耿仕呈,张伟涛,顾文源,姚惠娇,高志岭,何旭,刘春敬,范玉婧,代宇菲.漏缝地板发酵床对育肥羊养殖气体排放的影响及微生物学机理[J].农业环境科学学报,2024,43(4):926-936.
漏缝地板发酵床对育肥羊养殖气体排放的影响及微生物学机理
Effects of slatted floor fermentation bed on gas emissions and microbiological mechanism during fattening lamb breeding
投稿时间:2023-12-05  
DOI:10.11654/jaes.2023-1036
中文关键词: 漏缝地板发酵床  育肥羊    温室气体  排放
英文关键词: slatted floor fermentation bed  fattening sheep  ammonia  greenhouse gas  emission
基金项目:河北省现代农业产业技术体系羊产业创新团队建设专项资金项目(278);河北省自然科学基金项目(2022204029)
作者单位E-mail
耿仕呈 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室, 河北 保定 071000  
张伟涛 河北省畜牧总站, 石家庄 050000  
顾文源 河北省动物疫病预防控制中心, 石家庄 050000  
姚惠娇 河北省畜牧总站, 石家庄 050000  
高志岭 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室, 河北 保定 071000  
何旭 河北省畜牧良种工作总站, 石家庄 050000  
刘春敬 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室, 河北 保定 071000 chunjingliu2008@163.com 
范玉婧 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室, 河北 保定 071000  
代宇菲 河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室, 河北 保定 071000  
摘要点击次数: 284
全文下载次数: 193
中文摘要:
      为明确漏缝地板发酵床对育肥羊养殖过程氨(NH3)和温室气体排放特征的影响机制,本研究设置地面和漏缝地板发酵床两个试验处理,测定分析了育肥羊养殖过程NH3、氧化亚氮(N2O)、二氧化碳(CO2)和甲烷(CH4)的排放特征,并采用宏基因组学解析了影响上述气体排放的微生物学机理。试验结果表明,与地面相比,漏缝地板发酵床能够显著降低育肥羊养殖过程的NH3排放(P<0.05),其NH3排放速率为21.64~58.92 mg·m-2·h-1,NH3累积排放量为86.36±1.06 g·m-2,减排率达58.60%。漏缝地板发酵床同样也能显著降低育肥羊养殖过程的CH4排放速率(P<0.05),其CH4累积排放量为26.66 g·m-2,减排率可达64.42%。然而,漏缝地板发酵床会使得育肥羊养殖过程的N2O和CO2排放显著升高(P<0.05),尤其是发酵床组的N2O累积排放量高达994.30 mg·m-2,为地面的190.84倍。宏基因组学分析结果表明,发酵床粪便中SalinicoccusCorynebacteriumBrachybacteriumNocardiopsis等具有耐盐特性并参与硝化、反硝化的有益微生物相对丰度显著升高(P<0.05),hcp、narG、nirK、norB、nosZ等氮转化关键基因相对丰度显著升高(P<0.05),这使得发酵床的NH3排放降低,但会造成较高的N2O排放。发酵床中的AtopostipesAnaerococcus等厌氧微生物相对丰度显著降低(P<0.05),导致了其较低的CH4排放。此外,发酵床较高的CO2排放主要与微生物的丙酮酸代谢、三羧酸循环等密切相关。
英文摘要:
      In this study, we aimed at investigating how the slatted fermentation bed impacts ammonia(NH3)and greenhouse gas emissions, we thus constructed two animal pen types:ground floor and slatted floor and fermentation bed, then investigated the NH3, N2O, CO2, and CH4 emission characteristics as well as the microbiological mechanisms during fattening sheep breeding using metagenomics. Compared to the ground control, the fermentation bed could significantly reduce the NH3 emissions(P<0.05), exhibiting NH3 emission rates ranging between 21.64-58.92 mg·m-2·h-1, cumulative NH3 emission of 86.36 g·m-2, and a reduction rate of 58.60%. The slatted floor fermentation bed could also significantly reduce the CH4 emission rates(P<0.05), with a cumulative CH4 emission of 26.66 g·m-2 and a reduction rate of 64.42%. However, the slatted floor fermentation bed could significantly increase the N2O and CO2 emissions(P<0.05), especially those of N2O, yielding 190.84 times higher values than those of the ground control. The metagenomic analysis results revealed that the relative abundance of beneficial microorganisms, such as that of Salinicoccus, Corynebacterium, Brachybacterium, and Nocardiopsis, displaying salt tolerance and being involved in nitrification and denitrification, significantly increased in the fermentation bed(P<0.05). Moreover, the relative abundance of key nitrogen conversion genes, such as that of narG, napA, nirS, nirK, norB and nosZ, significantly increased(P< 0.05), reducing the NH3 but increasing the N2O emissions of the fermentation bed. Compared with the ground control, certain anaerobic microorganism populations, such as those of Anaerococus and Anaerococus, were significantly reduced(P<0.05)in the fermentation bed, yielding lower CH4 emissions. In addition, the higher CO2 emissions of the fermentation bed were closely related to microbial pyruvate metabolism and tricarboxylic acid cycling.
HTML    查看全文   查看/发表评论  下载PDF阅读器