2. 湖南省农业环境生态研究所, 长沙 410125;
3. 农业部长江中游平原农业环境重点实验室, 长沙 410125;
4. 农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125;
5. 湖南省洞庭湖流域农业面源污染防治工程技术研究中心, 长沙 410125
2. Hunan Institute of Agri-Environment and Ecology, Changsha 410125, China;
3. Key Laboratory of Agri-Environment in the Middle Reach Plain of Yangtze River, Ministry of Agriculture, Changsha 410125, China;
4. Hunan Province Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Changsha 410125, China;
5. Hunan Dongting Lake Basin Engineering Research Center for Agricultural Non-point Source Pollution Control, Changsha 410125, China
我国是世界上最大水稻生产国之一,拥有第二大水稻种植面积,占总种植面积的19%,水稻产量占总产量的28%[1]。氮肥施用是保证水稻高产的基础,据统计,2016年我国农业氮肥用量约为3 062万t,占全球总量的31%。氮肥的大量投入在提高水稻产量的同时,也加剧了氮素损失。研究表明,稻田氮素利用率普遍只有30%~40%[2-3],氮肥中一半以上养分通过地下淋溶、地表径流和氨挥发等途径进入环境,引起了一系列环境问题。如何提高稻田氮肥利用率,实现水稻生产绿色高产的环保目标,成为全社会关注的问题。
氨挥发是指氨从土壤或者田面水表面扩散至大气的过程,它是稻田氮素损失的主要途径[2, 4],占稻田总反应性氮素损失的70%[5]。据统计,2016年我国每年氨排放总量为11 Tg,其中稻田氨挥发量为1 Tg左右,占稻田施氮量的11.8%±2.0%[6-7]。氨挥发不仅降低肥料利用率、促进PM2.5的形成,还可通过大气干湿沉降引发水体富营养化以及作为第二次污染源再次破坏环境[4, 8]。
稻田系统氨排放受土壤理化性状、水肥管理等因素综合影响[9]。因此,采用合适的稻田管理措施对减缓稻田氨排放具有重要现实意义。本文通过探讨稻田氮素损失规律,归纳分析了稻田氨排放的相应减排措施,旨在为稻田氨挥发减排提供科学指导。
1 稻田氨挥发损失规律及关键影响因子 1.1 稻田氨挥发损失规律我国氨年排放量分别是美国和欧盟的3.0倍和2.7倍[10],农田氨挥发占总排放量的60%以上[7],其中稻田占农田总氨挥发量15%左右[6]。而较高的氨排放强度主要归因于农田氮素投入量大和较低的氮素利用率,据统计我国农田总氮投入是美国和欧盟的两倍以上,而氮素利用率仅为31%,明显低于美国(65%)和欧盟(61%)[11]。稻田氨挥发损失率呈现明显的地区分布特点,太湖区域氨挥发率高达58%[12],而华北平原和华南地区氨挥发率分别为38%和29%[6],湖南典型双季稻氨挥发率则为22%~32%[13],西部地区仅为7.5%[6],这种差异主要是各地区耕作强度和水肥管理的不同所造成的[6, 12]。氨挥发量整体随温度的升高不断增加,表现为夏季排放最高,春秋季排放较低,晚稻季高于早稻季的特点[6, 13-14]。关于稻田氨挥发产生的主要时期仍存在争议,Dong等[3]、Sun等[15]和Liu等[16]认为稻田氨挥发主要发生在基肥期,而Yao等[17]和He等[18]研究发现基肥期和分蘖肥期都是氨挥发主要时期,这主要与稻田施肥比例、管理措施、土壤性质和气候因素等有关[6]。研究表明稻田施肥后1~3 d氨挥发通量达到峰值,之后迅速下降,7~10 d后降至较低水平[3, 15]。
1.2 稻田氨挥发关键影响因子氮肥施用量是影响氨挥发的最主要因子,随着稻田氮素的投入,氨挥发不断增加[4, 16]。研究表明,施氮肥引起的田面水氨氮(NH4+-N)浓度和pH上升是促进氨挥发的主要原因[15, 19]。氮肥进入稻田系统后,经酶和微生物矿化、分解作用,主要以无机态的NH4+-N和NO2--N存在,然后经硝化作用转变为NO3--N,少量硝酸铵肥料直接分解为NO3--N(图 1)。在酸性土壤中,NH4+大部分以离子形式存在,并被土壤颗粒吸附(当pH为5.5时,99%为NH4+形式);而在碱性土壤中,大部分NH + 4会形成挥发性的氨,并通过挥发损失[20-21]。同时存在少量NO- 3通过微生物异化还原成铵,产生氨挥发损失[22]。此外,田间管理和气候等因素也是影响氨挥发的重要因子。研究表明,深施肥和分次施肥可以促进土壤胶体对NH4+-N的吸附,提高氮肥利用率,降低氨挥发损失[10, 14, 17];施肥后降雨或灌溉可以降低NH4+浓度和pH,且有利于提高土壤胶体吸附力,从而减少氨挥发的产生[4, 23-25];而风速、气温和太阳辐射则会增加田面水的蒸发,导致NH4+浓度增加,加剧氨挥发的损失[2]。
![]() |
图 1 氮素在稻田系统中主要的运移与转换过程 Figure 1 Main migration and transformation process of nitrogen in paddy field system |
为综合考虑稻田各氨挥发影响因子作用,相关氨挥发模型不断出现,如JM、RAINS、DNDC和RZWQM模型[24, 26-27]。通过输入土壤、环境变量并结合相关参数及校正因子,模型可较为准确地预测氨挥发量,解决常规监测技术存在的难以描述自然状态氨挥发和需大量实验器材及专业技术等难题。但是稻田氨挥发通量具有阶段性和空间变异性特点,不同模型仍然存在不确定性大、适用条件有限及需要大量测量值和参数等缺点[24, 27]。通过不断地优化相关参数因子、改进和校准模型,其预测准确性和适用性不断提高,可为制定氨挥发减排策略提供重要依据[24, 28]。
2 稻田氨挥发减排技术 2.1 优化氮肥类型 2.1.1 化学氮肥配合使用目前我国使用的氮肥主要类型有尿素、硫酸铵(硫铵)、碳酸氢铵(碳铵)和硝酸铵(硝铵),由于不同氮肥在土壤中的分解转化过程存在差异,因此施入稻田后氨排放也存在差异[9]。Meta分析显示,与尿素相比,硝酸铵、硫酸铵、磷酸脲、硝酸铵钙和磷酸铵等化肥分别减少88.3%、82.9%、76.2%、67.3%、51.5%的氨挥发,但由于其成本较高,且安全稳定性较低,因此在水稻生产中使用量较少[9, 29]。使用量较多的是尿素和碳铵,尿素施入土壤后经脲酶水解才转化为碳酸铵,氨挥发量较碳铵小;同时由于尿素成本低、含氮高,是目前稻田施用的主要氮肥[9, 13]。
无机化肥配合施用能够减少氨挥发的产生。研究表明,与单施尿素相比,尿素与碳酸钙混合施用会增加氨挥发损失[30],而尿素与氯化钾、过磷酸钙[30]、氯化铵[31]或硫化铵[32]等生理酸性肥料混合施用则可以抑制氨挥发,但是过量施用这类肥料容易造成土壤酸化板结;氮磷钾肥的平衡施用可以显著降低氨挥发损失,是提高肥料利用率和减少环境污染的一种基础有效的方法[33]。
2.1.2 缓/控释肥应用缓/控释肥的包膜或缓溶性物质可减缓氮肥的水解,协调氮素供应与水稻氮需求,实现水稻增产和氨减排[4, 12, 16]。一项Meta分析显示,缓/控释肥可降低68.0%的氨挥发,其中热塑性树脂包膜尿素、硫包膜尿素和聚酯包膜尿素分别降低了82.7%、78.4%和69.4%的氨挥发[29]。蒋一飞等[34]和吴振宇等[35]通过有机-无机复合缓释氮肥,分别减少了8%~23%和42%的氨挥发;赵蒙等[36]和Tang等[37]发现,新型聚脲甲醛(MU50)和草酰胺两种非包膜类缓/控释肥可分别减少40%和38%~63%的氨挥发。但也有研究表明,聚合物包膜尿素和硫包膜尿素等缓/控释对氨挥发减少作用很小,一次性基施甚至促进氨挥发的产生[38-39]。当前,缓/控释肥虽有着简化施肥和减少环境污染的优点,但仍存在价格昂贵、包膜材料易破损、残余包膜材料破坏土壤结构以及养分释放特征无法很好吻合水稻全生育期养分需求等问题,同时包膜肥料密度较低,表施或施入深度较浅易漂浮在田面水上,并通过径流产生富营养化环境问题。
2.1.3 复合微生物肥应用复合微生物肥由特定微生物菌剂与营养物质复合构成,主要包括三大类:细菌肥料(如固氮菌肥)、真菌肥料(如木霉菌肥)和放线菌肥料(如光合细菌肥)[40]。其含有的植物根际促生菌,具有固氮、解磷溶钾、分泌生长激素等多种促生功能,可调节植株生长发育,减少氨挥发的产生[40-42]。研究表明,通过微生物作用将多余NH4+转化成较稳定的有机氮,微生物肥可减少6.3%~16.7%的氨挥发[41, 43]。Wang等[44]发现,绿色木霉菌肥可减少32%~42%的氨挥发,且能显著提高作物产量。提高土壤pH缓冲性能、促进作物氮素吸收、增加硝化功能细菌丰度,从而缓解尿素水解引起的pH、田面水NH4+浓度急剧上升的问题,是微生物肥抑制氨挥发的主要机制[44]。但是微生物肥对环境条件要求较为苛刻,土壤pH、湿度、有机质含量等理化性质都会对内含的益生菌产生重大影响,同时益生菌有一个适应土壤环境的过程,初期效果可能并不明显,筛选更优良的菌株、菌株组合以及研发适应性更广的微生物肥产品是当前的重点[40, 42]。
2.2 有机废弃物资源化利用 2.2.1 畜禽粪便和菜籽饼资源化利用将畜禽粪便和菜籽饼制成生物有机肥,不仅可以维持土壤肥力,提高作物产量,还能解决氨挥发和硝态氮淋溶等环境问题[16, 45-47]。研究发现,猪粪或菜籽饼肥替代30%~50%无机氮肥在实现水稻增产的同时,可减少10%~18%的氨挥发[16, 46-47]。这是因为有机肥氮素释放缓慢,在土壤中还能产生大量有机酸和腐植酸,可以降低土壤pH和增加土壤对NH4+的吸附能力;同时还可促进微生物活动,将土壤无机氮固定转化成有机氮,减少土壤或田面水NH4+浓度[16, 45, 47]。但也有研究表明单施有机肥或替代比例过高会导致水稻前期养分供应不足而减产,而且长期过量单施有机肥可能造成严重的环境问题[16, 45]。Liu等[16]发现,单施菜籽饼肥可减少高达40%的氨挥发损失,但不足以维持水稻的产量;李燕青等[48]研究表明,单施牛粪、鸡粪或猪粪有机肥几乎没有产生氨挥发,但是单施牛粪会造成减产。当前,菜籽饼肥作为水稻肥料成本较高,短时间可能减少稻田经济效益,其长期效应及综合作用有待进一步研究;而畜禽粪便存在难储存、运输成本高等弊端,宜就近施用或生产成便于储存和运输的商品有机肥。
2.2.2 沼液资源化利用沼液是人、畜粪便和秸秆等生物质资源经厌氧发酵产生沼气过程的液体废弃物,富含多种水稻生长所需的有机物质、营养元素和活性物质,通过稻田消解沼肥不仅可以有效处理废弃物和节省水稻氮肥投入,还可以减少氨挥发的产生[49-50]。杨润等[50]研究表明,施入等量氮肥的沼液在维持水稻产量的同时,可以减少23%的氨挥发;周炜等[49]发现,沼液与有机肥配合施用可以减少20%以上的氨挥发。此外,相较于表施沼液,注入土壤可以减少70%左右的氨挥发[51]。但沼液呈微碱性,铵态氮占总氮量的85%以上,不合理施用可能促进氨挥发的产生[49, 52]。同时沼液还存在储存、运输和使用不便等问题,因此在确定适宜的沼液用量、有机肥配施和注入施用等基础上,配合就近施用或沼液浓缩等手段,是实现沼液资源化高效利用并减少稻田氨挥发的重点。
2.2.3 秸秆资源化利用秸秆可改善土壤结构,提高有机质含量和阳离子交换量,促进土壤对NH4+的吸附,减少稻田氨挥发[53]。不同秸秆类型对氨挥发减排效果不一致,在保证产量的同时,玉米、棉花和小麦秸秆还田可以分别减少34%~39%、22%~30%和20%的氨挥发损失[53-55]。但有研究指出,秸秆还田会增加土壤脲酶活性,促进尿素水解,同时还可能出现Eh迅速下降和pH急剧上升的现象,促进了NH + 4向氨的转化,促进稻田氨挥发的产生[15, 56]。Xu等[56]和Sun等[15]发现,小麦和水稻秸秆还田分别增加54%~90%和15%~35%的氨挥发损失。目前,秸秆还田对氨挥发的影响尚未达成一致,这与秸秆自身性状、施用量、土壤性质和施用方式等因素有关[53]。此外,秸秆还田还存在腐解慢、影响秧苗生长、缺乏处理秸秆的配套机械和增加温室效应等问题。
2.3 添加土壤添加剂 2.3.1 添加脲酶抑制剂脲酶抑制剂具有破坏脲酶活性的能力,可以使氮保持为稳定且不易挥发的尿素形态,避免尿素经脲酶水解引发田面水NH4+和pH的剧烈上升,从而减少氨挥发的产生[20]。其类型主要包括:磷酰胺衍生物、酚醛衍生物、醌类衍生物和金属离子类,其中NBPT(属磷酰胺衍生物)是使用最广的脲酶抑制剂。研究表明,NBPT处理过的尿素(Agrotain)可减少约53%的氨挥发损失,对土壤脲酶有很强的抑制作用,但其有效抑制期较短[57],新的产品不断出现(表 1)。而脲酶抑制剂增产和减少氨挥发损失的程度,取决于自身用量、土壤性质、pH和氮肥用量[25, 57-59]。此外,有学者利用脲酶抑制剂与硝化抑制剂相结合施入土壤,但是两者如何相互作用以及减排效果仍然存在异议[14, 25]。
![]() |
表 1 不同类型添加剂的氨挥发减排效率 Table 1 Ammonia emission mitigation by adding different additives |
生物炭疏松多孔、表面富含负电荷官能团,可以改善土壤结构,促进水稻对氮素吸收,增加土壤对NH4+的吸附能力,减少田面水NH4+浓度[64, 68]。研究表明,生物炭还能吸附对硝化过程具有抑制作用的酚类化合物,增加氨氧化细菌的丰度,促进硝化作用,可减少4.4%~57.0%的氨挥发[18, 53, 64]。但生物炭大多数呈碱性,引起pH上升,可能促进稻田氨挥发的产生[3, 69]。He等[18]和Dong等[3]发现,随着生物炭的老化,碱性物质被中和,其改善土壤CEC和增加土壤对NH4+吸附能力等特性尚存。虽然生物炭使稻田田面水pH上升,促进了氨挥发的产生,但随后的几年可减少6.8%~20.8%的氨挥发[3, 18]。此外,Sun等[70]通过酸性木醋酸来中和生物炭的碱性,减少了13.6%的氨挥发。因此,生物炭能否降低氨挥发的产生,主要取决于pH上升和吸附NH4+能力之间的平衡[3, 69]。同时,生物炭疏松多孔结构有利于好氧/异氧微生物种群生存,加速土壤氮素循环,有利于土壤有机氮的矿化,提高有效氮含量;而其对土壤硝化、反硝化作用及有效态NH4+、NO- 3含量的影响,取决于原材料和工艺温度等因素[71]。
2.3.3 添加黏土矿物沸石和膨润土均是以硅铝酸盐为主的黏土矿物,具有较大的比表面积、强吸附性、保水性和高阳离子交换性等特性,可以促进土壤胶体对NH4+的吸附,减少氨挥发的产生[23, 65, 72]。研究表明,沸石粉和膨润土可分别减少43.5%和56%的氨挥发,且有利于提高氮肥利用率和作物产量[23, 65, 73]。这是通过在施氮后的短时间内固定NH4+,降低NH4+对根系的毒害,促进植株对氮的吸收,减少土壤/田面水NH4+浓度实现的[74-75];同时其微孔结构还可能有利于硝化细菌的生长繁殖,促进NH4+转化成NO- 3[76]。此外,研究认为随着沸石粉施用量的增加,氨挥发量不断减少,可减少7.7%~ 35.5%的氨挥发[23, 74, 77]。但是,沸石粉的大量施用可能会破坏土壤结构,进一步带来环境风险;膨润土也存在吸附性能低、施用量大以及生产过程容易对环境造成二次污染等问题,加强经济高效的新型改性沸石和改性膨润土研发是当前的重点。Shen等[78]发现,新型改性膨润土可减少约25%的氨挥发,且降低了氮素淋溶、N2O排放,而使用量仅需尿素的10%(质量分数)。
2.3.4 添加有机聚合物腐植酸和聚天门冬氨酸是一类高分子有机聚合物,具有良好的吸附性、吸水性和螯合等性能,可作为肥料增效剂[65-66]。研究表明,将少量腐植酸和聚天门冬氨酸添加到尿素中,可分别减少9.7%和6.3%的氨挥发,这是因为它们含有大量羧基、羟基等官能团,可为NH4+提供大量的阳离子交换位点,并结合脲酶的硫醇基或尿素的酰胺基,抑制脲酶活性,从而减少土壤/田面水的NH4+浓度[66, 79];武岩等[65]发现,腐植酸改土肥料可减少49%的氨挥发,且提高了作物产量,这可能是由于大量腐植酸的施入缓解了施肥后短期内田面水pH的剧烈上升;Yang等[67]也认为,聚天门冬氨酸提高了土壤胶体对NH4+浓度的吸附,且通过改性研发的高分子量聚天门冬氨酸钙可减少高达47.5%的氨挥发,同时起到减少N2O排放以及提高作物氮素利用率和产量的作用。但是,腐植酸本身是一种污染物,一部分难降解的腐植酸类物质容易引发水体污染,通过纯化腐植酸配比添加进肥料是目前研究的热点,可充分提高腐植酸利用效率,减少带来的环境负面影响;而聚天门冬氨酸是环境友好型的绿色聚合物,可完全生物降解成小分子物质(CO2和H2O),不过其生产成本较高,极大增加了稻田生产成本,推进高效率改性聚天门冬氨酸及产业化生产是当前的重点。
2.4 水肥科学管理水肥管理是水稻生产中最重要的环节,决定水稻生长发育、土壤肥力状况和微生物环境,调节着整个氮素循环[80]。其中氮肥管理主要包括:施氮量、氮肥种类、施氮方式、施氮时期[30];而水分管理则主要指的是水稻生育期灌溉和排水两个环节[81]。
2.4.1 氮素运筹管理大量研究认为,氨挥发主要发生在水稻生育前期[3, 15-18]。因此,许多研究建议减少水稻基肥期氮肥用量,增加施肥次数,将一次性施肥改为分次施肥模式,可减少约24%的氨挥发[10, 14]。前文所涉及到的各种添加剂和缓释肥等新型肥料,虽然可以协调氮素输入和水稻养分吸收,但是对产量增加和氨挥发减少不稳定,可能受限于当地劳动力、技术要求和技术成本等因素。而氮肥深施(深度为5~15 cm)是在淹水稻田少施氮肥、提高水稻产量和减少氨挥发的有效途径[17, 82]。研究表明相较于表施,氮肥深施可以降低54%~90%的氨挥发,且有利于提高氮肥利用率、作物产量和根系活力[8, 17, 73]。这是因为氮肥深施可以增加氮肥颗粒与土壤的接触,使土壤胶体吸附更多NH4+[17, 83];降低土壤脲酶活性,减缓尿素的水解[83];延长根部区域氮素有效利用时间,增加水稻对氮的吸收[17, 83-84]。而表施尿素为田面水提供了丰富的营养物质,有利于藻类生长发育和光合作用,引起田面水pH上升,会增加氨挥发[85]。Wang等[86]认为,当施肥深度大于10 cm时,氨挥发明显减少。但是氮肥施用深度不宜过深,当施肥深度与根系生长点距离过大时,无法满足根系养分需求,会导致水稻减产[83]。相关研究表明,氮肥深施最适宜的深度为10 cm,此时可以获得最高水稻产量和较低氨挥发[83]。
2.4.2 水分管理节水灌溉可以改善根系形态、保持土壤养分、提高氮素利用率和作物产量,同时显著降低氨挥发[87-88]。Xiao等[87]发现,与常规灌溉处理相比,两种节水灌溉模式(湿润和间歇灌溉)可以分别减少6.4%和19.2%的氨挥发损失,同时可以减少高达60%的淋溶损失、促进水稻对氮素的吸收,明显减少化肥带来的环境污染问题。研究认为节水灌溉水层较浅,土壤裂隙发育程度较强,后期灌水施肥可以将氮素带入土层深处,部分实现尿素深施效果,从而减少水稻生长后期氨挥发[23, 87]。Yang等[4]和Sun等[23]发现,在水稻生育前期施入更大比例的氮肥,通过灌溉增加淹水深度可以缓解由氮肥施入引起的NH + 4浓度和pH上升的问题,从而减少氨挥发的产生。此外,有学者指出受控灌溉和受控排水的组合可能是一种有效的水分管理方法,可减轻稻田施肥后径流损失和氨挥发损失[81]。相同的水分管理可能会产生不一样的结果,这与不同氮肥管理对稻田水分状况的响应存在差异有关,同时不同气候条件也影响着田间水分状况,水肥综合作用于氨挥发的调节[89]。
3 总结与展望氨挥发作为稻田氮素损失的主要途径之一,不仅增加了农业生产成本、降低氮素养分利用效率,还因氨挥发导致的氮沉降、温室效应等一系列连锁反应,给生态环境造成了严重的危害。本文通过查阅大量文献,总结了稻田系统氨挥发损失的基本规律及其关键影响因子,发现降低关键排放时期的田面水NH4+浓度和pH值是控制稻田氨挥发的关键;综述了从源头上控制稻田氨挥发的相关技术措施,并对减排原理、减排效果及关键障碍因子进行了相关分析,为稻田氨挥发减排提供了理论支撑和技术指导。但实际生产过程中采取哪种氨挥发控制与减排技术,还应根据不同生态区域、不同作物养分吸收规律和生长期、劳动机械化水平及生产效益等因素进行综合选择,以实现粮食安全、农民增收、土壤质量可持续发展和减少环境污染的多重目标。
由于农田氨挥发对经济和环境造成许多危害,近年来,国内关于氨挥发开展了大量研究,但大多数缺乏氨排放对环境影响机制的研究,相关氨挥发减排技术措施仅考虑氮素的单一损失途径,对氮肥的损失去向缺乏系统性研究,可能会加剧温室效应、氮素地表径流和地下淋溶等环境污染问题。同时,对不同减排技术措施在田间的应用效果缺乏相应系统性评价指标。此外,国内广泛依靠田间试验与传统监测方法难以定量准确监测氮素复杂转化过程,特别是大面积尺度的氨挥发监测手段还不够成熟;针对氨挥发模型的研究也相对较少,大多直接套用国外模型,通过本地化因子修正,其拟合结果与国内实际情况差异大,不能真实反映我国不同农业生态系统氨挥发状况。
目前,针对稻田系统氨挥发损失及减排技术研究工作,需要加强稻田氨挥发损失的长期原位监测,结合盆栽和室内模拟试验全面研究氮素迁移转化过程。并将田间监测数据与影响稻田氨挥发的主控因子结合,构建符合国内实际情况的氨排放模型。借助模型,利用有限监测数据对氮素不同途径损失做出准确预测,并通过设置不同氮素损失途径脆弱区,有针对性地重点研究相关区域的氮素损失途径;分析和评价不同的减排技术,综合考虑经济效益、氨挥发和温室气体(CH4和N2O)协同减排等因素,有针对性地提出综合的氨挥发减排技术体系。
研发兼具操作简易、成本低廉的氨挥发减排技术仍然是未来一段时间内的研究重点。特别是综合利用农业有机废弃物和新型缓控释肥料的研发在减排氨挥发方面具有广阔的前景。同时,开展氮高效品种选育和相应农业配套机械设备研发,对于有效控制氨挥发、提高氮素利用率有重要作用。
[1] |
刘兆辉, 吴小宾, 谭德水, 等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学, 2018, 51(20): 3827-3839. LIU Zhao-hui, WU Xiao-bin, TAN De-shui, et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica, 2018, 51(20): 3827-3839. DOI:10.3864/j.issn.0578-1752.2018.20.002 |
[2] |
Yang W L, Que H L, Wang S W, et al. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China[J]. Environmental Pollution, 2020, 257: 9. |
[3] |
Dong Y B, Wu Z, Zhang X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a ricewheat rotation system[J]. Field Crops Research, 2019, 241: 1-11. |
[4] |
Yang Y, Li N, Ni X Y, et al. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields[J]. Journal of Cleaner Production, 2020, 244: 1-11. |
[5] |
Ding W C, He P, Zhang J J, et al. Optimizing rates and sources of nutrient input to mitigate nitrogen, phosphorus, and carbon losses from rice paddies[J]. Journal of Cleaner Production, 2020, 256: 1-13. |
[6] |
Zhou F, Ciais P, Hayashi K, et al. Re-estimating NH3 emissions from Chinese cropland by a new nonlinear model[J]. Environ Sci Technol, 2016, 50(2): 564-572. DOI:10.1021/acs.est.5b03156 |
[7] |
Fu H, Luo Z, Hu S. A temporal-spatial analysis and future trends of ammonia emissions in China[J]. Sci Total Environ, 2020, 731: 1-9. |
[8] |
Zhang M, Yao Y, Zhao M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field[J]. Agriculture Ecosystems & Environment, 2017, 247: 236-245. |
[9] |
卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149-162. LU li-li, WU Gen-yi. Advances in affecting factors of ammonia emission on in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162. |
[10] |
Huang S, Lv W S, Bloszies S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China:A meta-analysis[J]. Field Crops Research, 2016, 192: 118-125. DOI:10.1016/j.fcr.2016.04.023 |
[11] |
Liu L, Zhang X Y, Xu W, et al. Challenges for global sustainable nitrogen management in agricultural systems[J]. Journal of Agricultural and Food Chemistry, 2020, 68(11): 3354-3361. DOI:10.1021/acs.jafc.0c00273 |
[12] |
Liu X, Chen L, Hua Z, et al. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region[J]. Environmental Science and Pollution Research, 2020, 27(8): 8386-8394. DOI:10.1007/s11356-019-07536-2 |
[13] |
朱坚, 石丽红, 田发祥, 等. 典型双季稻田基施碳酸氢铵和尿素的氨挥发损失研究[J]. 中国土壤与肥料, 2015(2): 83-88. ZHU Jian, SHI Li-hong, TIAN Fa-xiang, et al. Ammonia volatilization loss from typical double-cropping paddy field with basal application of ammonium bicarbonate and urea[J]. Soil and Fertilizer Sciences in China, 2015(2): 83-88. |
[14] |
周旋, 吴良欢, 戴锋, 等. 生化抑制剂组合与施肥模式对黄泥田稻季氨挥发的影响[J]. 农业环境科学学报, 2018, 37(2): 399-408. ZHOU Xuan, WU Liang-huan, DAI Feng, et al. Effects of combined biochemical inhibitors and fertilization models on ammonia volatilization in yellow clayey paddy field[J]. Journal of Agro-Environment Science, 2018, 37(2): 399-408. |
[15] |
Sun L Y, Wu Z, Ma Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a ricewheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105. DOI:10.1016/j.atmosenv.2018.02.050 |
[16] |
Liu T Q, Huang J F, Chai K B, et al. Effects of N fertilizer sources and tillage practices on NH3 volatilization, grain yield, and N use efficiency of rice fields in central China[J]. Frontiers in Plant Science, 2018, 9: 1-10. DOI:10.3389/fpls.2018.00001 |
[17] |
Yao Y, Zhang M, Tian Y, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254-266. DOI:10.1016/j.fcr.2017.03.013 |
[18] |
He T, Liu D, Yuan J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018, 264: 44-53. |
[19] |
Xie W M, Li S J, Shi W M, et al. Quantitatively ranking the influencing factors of ammonia volatilization from paddy soils by grey relational entropy[J]. Environmental Science and Pollution Research, 2020, 27(2): 2319-2327. DOI:10.1007/s11356-019-06952-8 |
[20] |
Sigurdarson J J, Svane S, Karring H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture[J]. Reviews in Environmental Science and Bio-Technology, 2018, 17(2): 241-258. DOI:10.1007/s11157-018-9466-1 |
[21] |
Mandal S, Donner E, Vasileiadis S, et al. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil[J]. Science of the Total Environment, 2018, 627: 942-950. DOI:10.1016/j.scitotenv.2018.01.312 |
[22] |
杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. YANG Shan, WU Sheng-jun, CAI Yan-jiang, et al. The synergetic and competitive mechanism and the dominant factors of dissimilatory nitrate reduction processes:A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232. |
[23] |
Sun Y D, Xia G M, He Z L, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103. DOI:10.1016/j.fcr.2019.03.004 |
[24] |
Zhan X Y, Chen C, Wang Q H, et al. Improved Jayaweera-Mikkelsen model to quantify ammonia volatilization from rice paddy fields in China[J]. Environmental Science and Pollution Research, 2019, 26(8): 8136-8147. DOI:10.1007/s11356-019-04275-2 |
[25] |
Castellano-Hinojosa A, Gonzalez-Lopez J, Vallejo A, et al. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science, 2020, 183(1): 99-109. DOI:10.1002/jpln.201900038 |
[26] |
Michalczyk A, Kersebaum K C, Heimann L, et al. Simulating in situ ammonia volatilization losses in the North China Plain using a dynamic soil-crop model[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(2): 270-285. DOI:10.1002/jpln.201400673 |
[27] |
Dubache G, Li S, Zheng X, et al. Modeling ammonia volatilization following urea application to winter cereal fields in the United Kingdom by a revised biogeochemical model[J]. Science of the Total Environment, 2019, 660: 1403-1418. DOI:10.1016/j.scitotenv.2018.12.407 |
[28] |
Li S Q, Zheng X H, Zhang W, et al. Modeling ammonia volatilization following the application of synthetic fertilizers to cultivated uplands with calcareous soils using an improved DNDC biogeochemistry model[J]. Science of the Total Environment, 2019, 660: 931-946. DOI:10.1016/j.scitotenv.2018.12.379 |
[29] |
Ti C P, Xia L L, Chang S X, et al. Potential for mitigating global agricultural ammonia emission:A meta-analysis[J]. Environmental Pollution, 2019, 245: 141-148. DOI:10.1016/j.envpol.2018.10.124 |
[30] |
周伟, 吕腾飞, 杨志平, 等. 氮肥种类及运筹技术调控土壤氮素损失的研究进展[J]. 应用生态学报, 2016, 27(9): 3051-3058. ZHOU Wei, LÜ Teng-fei, YANG Zhi-ping, et al. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 3051-3058. |
[31] |
敖玉琴, 张维, 田玉华, 等. 脲胺氮肥对太湖地区稻田氨挥发及氮肥利用率的影响[J]. 土壤, 2016, 48(2): 248-253. AO Yu-qin, ZHANG Wei, TIAN Yu-hua, et al. Effects of urea-ammonium mixed nitrogen fertilizer on ammonia volatilization and nitrogen use efficiency in paddy field of Taihu Lake region[J]. Soils, 2016, 48(2): 248-253. |
[32] |
Chien S H, Gearhart M M, Villagarcia S. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact:A review[J]. Soil Science, 2011, 176(7): 327-335. DOI:10.1097/SS.0b013e31821f0816 |
[33] |
夏淑洁, 刘闯, 袁晓良, 等. 不同氮钾水平及氮形态差异对土壤氨挥发和氧化亚氮排放的影响[J]. 农业环境科学学报, 2020, 39(5): 1122-1129. XIA Shu-jie, LIU Chuang, YUAN Xiao-liang, et al. Effects of different nitrogen and potassium levels and nitrogen forms on soil ammonia volatilization and nitrous oxide emissions[J]. Journal of Agro-Environment Science, 2020, 39(5): 1122-1129. |
[34] |
蒋一飞, 张砚铭, 杨明, 等. 不同材料包膜氮肥氮素挥发特征及对油菜产量的影响[J]. 中国农业科学, 2018, 51(12): 2348-2356. JIANG Yi-fei, ZHANG Yan-ming, YANG Ming, et al. Nitrogen volatilization characteristics of different materials coated nitrogen fertilizer and its effect on rape yield[J]. Scientia Agricultura Sinica, 2018, 51(12): 2348-2356. DOI:10.3864/j.issn.0578-1752.2018.12.011 |
[35] |
吴振宇, 周子军, 杨阳, 等. 新型缓释尿素的缓释特性及其在土壤中转化研究[J]. 中国农学通报, 2018, 34(6): 84-90. WU Zhenyu, ZHOU Zi-jun, YANG Yang, et al. Release characteristics of a new slow-release urea fertilizer and its transformation in soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(6): 84-90. |
[36] |
赵蒙, 曾科, 姚元林, 等. 聚脲甲醛缓释肥对太湖稻麦轮作体系氨挥发及产量的影响[J]. 植物营养与肥料学报, 2019, 25(1): 55-63. ZHAO Meng, ZENG Ke, YAO Yuan-lin, et al. Effects of polyureaformaldehyde on ammonia volatilization and yields underrice-wheat rotation in Taihu region[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 55-63. |
[37] |
Tang Y, Li X, Shen W Z, et al. Effect of the slow-release nitrogen fertilizer oxamide on ammonia volatilization and nitrogen use efficiency in paddy soil[J]. Agronomy-Basel, 2018, 8(4): 1-10. |
[38] |
薛欣欣, 吴小平, 张永发, 等. 控失尿素对稻田氨挥发、氮素转运及利用效率的影响[J]. 应用生态学报, 2018, 29(1): 133-140. XUE Xin-xin, WU Xiao-ping, ZHANG Yong-fa, et al. Effects of loss-controlled urea on ammonia volatilization, N translocation and utilization efficiency in paddy rice[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 133-140. |
[39] |
Ke J, Xing X M, Li G H, et al. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice[J]. Field Crops Research, 2017, 205: 147-156. DOI:10.1016/j.fcr.2016.12.027 |
[40] |
阎世江, 张继宁, 刘洁, 等. 生物菌肥在蔬菜上的应用研究进展[J]. 山西农业科学, 2018, 46(2): 306-308, 312. YAN Shi-jiang, ZHANG Ji-ning, LIU Jie, et al. Research progress on application of microbial fertilizer in vegetable[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(2): 306-308, 312. DOI:10.3969/j.issn.1002-2481.2018.02.35 |
[41] |
张英鹏, 李洪杰, 刘兆辉, 等. 农田减氮调控施肥对华北潮土区小麦-玉米轮作体系氮素损失的影响[J]. 应用生态学报, 2019, 30(4): 1179-1187. ZHANG Ying-peng, LI Hong-jie, LIU Zhao-hui, et al. Effect of reducing N and regulated fertilization on N loss of wheat-maize rotation system of farmland in chao soil region of North China Plain[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1179-1187. |
[42] |
Vassilev N, Vassileva M, Lopez A, et al. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 4983-4996. DOI:10.1007/s00253-015-6656-4 |
[43] |
Guo C, Ren T, Li P F, et al. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea[J]. Environmental Science and Pollution Research, 2019, 26(3): 2569-2579. DOI:10.1007/s11356-018-3792-2 |
[44] |
Wang X, Xu S, Wu S, et al. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China[J]. J Environ Sci (China), 2018, 66: 199-207. DOI:10.1016/j.jes.2017.05.016 |
[45] |
Zhang, T, Liu H B, Luo J F, et al. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field[J]. Science of the Total Environment, 2018, 633: 230-239. DOI:10.1016/j.scitotenv.2018.03.069 |
[46] |
李喜喜, 杨娟, 王昌全, 等. 猪粪施用对成都平原稻季氨挥发特征的影响[J]. 农业环境科学学报, 2015, 34(11): 2236-2244. LI Xixi, YANG Juan, WANG Chang-quan, et al. Effects of pig manure applications on ammonia volatilization in soil during rice season in Chengdu plain[J]. Journal of Agro-Environment Science, 2015, 34(11): 2236-2244. DOI:10.11654/jaes.2015.11.028 |
[47] |
李诗豪, 刘天奇, 马玉华, 等. 耕作方式与氮肥类型对稻田氨挥发、氮肥利用率和水稻产量的影响[J]. 农业资源与环境学报, 2018, 35(5): 447-454. LI Shi-hao, LIU Tian-qi, MA Yu-hua, et al. Effects of tillage practices and nitrogen sources on NH3 volatilization, nitrogen use efficiency and yield in paddy fields in central China[J]. Journal of Agricultural Resources and Environment, 2018, 35(5): 447-454. |
[48] |
李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对作物产量及农田氮肥气态损失的影响[J]. 植物营养与肥料学报, 2019, 25(11): 1835-1846. LI Yan-qing, WEN Yan-chen, LIN Zhi-an, et al. Effect of different manures combined with chemical fertilizer on yields of crops and gaseous N loss in farmland[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1835-1846. DOI:10.11674/zwyf.18494 |
[49] |
周炜, 孙国峰, 王鑫, 等. 沼液与有机肥配施条件下氮损失风险的研究[J]. 农业环境科学学报, 2019, 38(8): 1743-1750. ZHOU Wei, SUN Guo-feng, WANG Xin, et al. Risk of nitrogen loss under the combined application of biogas slurry and organic fertilizer[J]. Journal of Agro-Environment Science, 2019, 38(8): 1743-1750. |
[50] |
杨润, 孙钦平, 赵海燕, 等. 沼液在稻田的精确施用及其环境效应研究[J]. 农业环境科学学报, 2017, 36(8): 1566-1572. YANG Run, SUN Qin-ping, ZHAO Hai-yan, et al. Precision application of biogas slurry and its environmental effects in paddy fields[J]. Journal of Agro-Environment Science, 2017, 36(8): 1566-1572. |
[51] |
Riva C, Orzi V, Carozzi M, et al. Short-term experiments in using digestate products as substitutes for mineral(N)fertilizer:Agronomic performance, odours, and ammonia emission impacts[J]. Science of the Total Environment, 2016, 547: 206-214. DOI:10.1016/j.scitotenv.2015.12.156 |
[52] |
陈贵, 孙达, 鲁晨妮, 等. 规模化养猪场沼气工程沼液特性研究[J]. 中国沼气, 2020, 38(3): 57-64. CHEN Gui, SUN Da, LU Chen-ni, et al. Characteristics of biogas slurry in large-scale pig farm biogas project[J]. China Biogas, 2020, 38(3): 57-64. |
[53] |
常菲, 红梅, 武岩, 等. 灌溉方式和改良措施对河套灌区盐渍土氨挥发的影响[J]. 中国土壤与肥料, 2019(2): 38-45. CHANG Fei, HONG Mei, WU Yan, et al. Effects of irrigation methods and improvement measures on ammonia volatilization of saline soil in Hetao irrigation area[J]. Soil and Fertilizer Sciences in China, 2019(2): 38-45. |
[54] |
李琦, 廖娜, 张妮, 等. 棉花秸秆及其生物炭对滴灌棉田氨挥发的影响[J]. 农业环境科学学报, 2014, 33(10): 1987-1994. LI Qi, LIAO Na, ZHANG Ni, et al. Effects of cotton stalk and its biochar on ammonia volatilization from a drip irrigated cotton field[J]. Journal of Agro-Environment Science, 2014, 33(10): 1987-1994. DOI:10.11654/jaes.2014.10.016 |
[55] |
Cao Y, Sun H, Zhang J, et al. Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils[J]. Soil & Tillage Research, 2018, 178: 92-98. |
[56] |
Xu S S, Hou P F, Xue L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10. DOI:10.1016/j.atmosenv.2017.09.009 |
[57] |
Cantarella H, Otto R, Soares J R, et al. Agronomic efficiency of NBPT as a urease inhibitor:A review[J]. J Adv Res, 2018, 13: 19-27. DOI:10.1016/j.jare.2018.05.008 |
[58] |
Silva A G B, Sequeira C H, Sermarini R A, et al. Urease inhibitor NBPT on ammonia volatilization and crop productivity:A meta-analysis[J]. Agronomy Journal, 2017, 109(1): 1-13. DOI:10.2134/agronj2016.04.0200 |
[59] |
马芬, 杨荣全, 郭李萍. 控制氮肥施用引起的活性氮气体排放:脲酶/硝化抑制剂研究进展与展望[J]. 农业环境科学学报, 2020, 39(4): 908-922. MA Fen, YANG Rong-quan, GUO Li-ping. Decrease the emission of active nitrogen gases in nitrogen fertilizer application:Research progresses and perspectives of urease/nitrification inhibitors[J]. Journal of Agro-Environment Science, 2020, 39(4): 908-922. |
[60] |
Li Q Q, Cui X Q, Liu X J, et al. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain[J]. Scientific Reports, 2017, 7: 1-9. DOI:10.1038/s41598-016-0028-x |
[61] |
张翀, 李雪倩, 苏芳, 等. 施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J]. 农业环境科学学报, 2016, 35(6): 1194-1201. ZHANG Chong, LI Xue-qian, SU Fang, et al. Effects of different ferti1ization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194-1201. |
[62] |
Schraml M, Gutser R, Maier H, et al. Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT[J]. Journal of Agricultural Science, 2016, 154(8): 1453-1462. DOI:10.1017/S0021859616000022 |
[63] |
陈敏, 李高生, 冼建鸿, 等. 棉酚渣对尿素水解及土壤氨挥发的影响[J]. 中国土壤与肥料, 2019(5): 59-64. CHEN Min, LI Gaosheng, XIAN Jian-hong, et al. Effect of gossypol residue on urea hydrolysis and ammonia volatilization in soil[J]. Soil and Fertilizer Sciences in China, 2019(5): 59-64. |
[64] |
Sun X, Zhong T, Zhang L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512-518. DOI:10.1016/j.scitotenv.2018.12.450 |
[65] |
武岩, 红梅, 林立龙, 等. 不同施肥措施对河套灌区盐化潮土氨挥发及氧化亚氮排放的影响[J]. 土壤, 2017, 49(4): 745-752. WU Yan, HONG Mei, LIN Li-long, et al. Influence of different fertilization measures on NH3 volatilization and N2O emission in salined flavo-aquic soil of Hetao irrigation area[J]. Soils, 2017, 49(4): 745-752. |
[66] |
Shen Y, Lin H, Gao W, et al. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425-4432. DOI:10.1002/jsfa.10482 |
[67] |
Yang J, Liu T, Liu H, et al. Biodegradable PASP can effectively inhibit nitrification, moderate NH3 emission, and promote crop yield[J]. Archives of Agronomy and Soil Science, 2019, 65(9): 1273-1286. DOI:10.1080/03650340.2018.1562275 |
[68] |
Fidel R B, Laird D A, Spokas K A. Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent[J]. Scientific Reports, 2018, 8: 1-10. DOI:10.1038/s41598-017-17765-5 |
[69] |
Mandal S, Donner E, Smith E, et al. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soilplant system:A closed chamber experiment[J]. Science of the Total Environment, 2019, 697: 1-8. |
[70] |
Sun H J, Feng Y F, Xue L H, et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar[J]. Chemosphere, 2020, 242: 1-7. |
[71] |
Purakayastha T J, Bera T, Bhaduri D, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields:Pathways to climate change mitigation and global food security[J]. Chemosphere, 2019, 227: 345-365. DOI:10.1016/j.chemosphere.2019.03.170 |
[72] |
Chu Q, Xu S, Xue L, et al. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency[J]. Science of the Total Environment, 2020, 718: 1-7. |
[73] |
Pan B B, Lam S K, Mosier A, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies:A global synthesis[J]. Agriculture Ecosystems & Environment, 2016, 232: 283-289. |
[74] |
Palanivell P, Ahmed O H, Ab N M. Majid minimizing ammonia volatilization from urea, improving lowland rice(cv. MR219)seed germination, plant growth variables, nutrient uptake, and nutrient recovery using clinoptilolite zeolite[J]. Archives of Agronomy and Soil Science, 2016, 62(5): 708-724. DOI:10.1080/03650340.2015.1077229 |
[75] |
Ferretti G, Keiblinger K M, Zimmermann M, et al. High resolution short-term investigation of soil CO2, N2O, NOx and NH3 emissions after different chabazite zeolite amendments[J]. Applied Soil Ecology, 2017, 119: 138-144. DOI:10.1016/j.apsoil.2017.06.004 |
[76] |
Du L, Trinh X, Chen Q R, et al. Effect of clinoptilolite on ammonia emissions in integrated vertical-flow constructed wetlands(IVCWs) treating swine wastewater[J]. Ecological Engineering, 2018, 122: 153-158. DOI:10.1016/j.ecoleng.2018.07.037 |
[77] |
Bueno S C E, Baptista M, Almeida P S G D, et al. Cuban zeolite as ammonium carrier in urea-based fertilizer pellets:Photoacousticbased sensor for monitoring N-ammonia losses by volatilization in aqueous solutions[J]. Sensors and Actuators B-Chemical, 2015, 212: 35-40. DOI:10.1016/j.snb.2015.01.114 |
[78] |
Shen Y, Jiao S, Ma Z, et al. Humic acid-modified bentonite composite material enhances urea nitrogen use efficiency[J]. Chemosphere, 2020, 255: 1-8. |
[79] |
王娜, 徐嘉翼, 张鑫, 等. 聚天门冬氨酸尿素对水稻产量及田面水氮素变化的综合影响[J]. 农业资源与环境学报. WANG Na, XU Jia-yi, ZHANG Xin, et al. Effects of polyaspartic acid urea on rice yield and nitrogen concentrations in paddy field ponding water[J]. Journal of Agricultural Resources and Environment. DOI:10.13254/j.jare.2020.0072 |
[80] |
Xiao M, Miao Z, Li Y. Change of root-zone soil environment in flooded paddy field under controlled drainage conditions[J]. Polish Journal of Environmental Studies, 2017, 26(2): 881-892. DOI:10.15244/pjoes/66717 |
[81] |
He Y P, Zhang J Y, Yang S H, et al. Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization[J]. Agricultural Water Management, 2019, 221: 231-237. DOI:10.1016/j.agwat.2019.03.043 |
[82] |
Jiang C Q, Lu D J, Zu C L, et al. Root-zone fertilization improves crop yields and minimizes nitrogen loss in summer maize in China[J]. Scientific Reports, 2018, 8: 1-9. |
[83] |
Liu T Q, Fan D J, Zhang X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80-90. |
[84] |
Liu W, Xiong Y S, Xu X Y, et al. Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil[J]. Scientific Reports, 2019, 9: 1-11. |
[85] |
Huda A, Gaihre Y K, Islam M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2016, 104(1): 53-66. |
[86] |
Wang L L, Li W Z, Wang Z J, et al. Effects of digestate application depth on soil nitrogen volatilization and vertical distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 101-107. |
[87] |
Xiao M H, Li Y Y, Wang J W, et al. Study on the law of nitrogen transfer and conversion and use of fertilizer nitrogen in paddy fields under water-saving irrigation mode[J]. Water, 2019, 11(2): 1-13. |
[88] |
Yang S H, Xiao Y A, Xu J Z. The economic value of gas exchange in a paddy field ecosystem using water-saving irrigation[J]. Polish Journal of Environmental Studies, 2018, 27(5): 2267-2275. |
[89] |
Islam S M M, Gaihre Y K, Shah A L, et al. Rice yields and nitrogen use efficiency with different fertilizers and water management under intensive lowland rice cropping systems in Bangladesh[J]. Nutrient Cycling in Agroecosystems, 2016, 106(2): 143-156. |