快速检索        
  农业环境科学学报  2020, Vol. 39 Issue (4): 872-881  DOI: 10.11654/jaes.2020-0102
0

引用本文  

张国, 王效科. 我国保护性耕作对农田温室气体排放影响研究进展[J]. 农业环境科学学报, 2020, 39(4): 872-881.
ZHANG Guo, WANG Xiao-ke. Impacts of conservation tillage on greenhouse gas emissions from cropland in China: A review[J]. Journal of Agro-Environment Science, 2020, 39(4): 872-881.

基金项目

国家重点研发计划项目(2018YFC0507303);贵州省科技厅项目(黔科合联合[2017]7372号); 贵州师范大学博士科研启动资金项目(11904/0517058)

Project supported

The National Key Research and Development Program of China(2018YFC0507303); The Guizhou Science and Technology Fund Project (Qiankehe LH[2017]7372); The Science Foundation for Doctor of Guizhou Normal University(11904/0517058)

通信作者

王效科, E-mail:wangxk@rcees.ac.cn

作者简介

张国(1974-), 男, 山东泰安人, 博士, 副教授, 主要从事土壤生态与温室气体收支研究。E-mail:zhangguo2017@gznu.edu.cn

文章历史

收稿日期: 2020-01-30
录用日期: 2020-03-13
我国保护性耕作对农田温室气体排放影响研究进展
张国1,2 , 王效科3     
1. 贵州师范大学喀斯特研究院, 贵阳 550001;
2. 国家喀斯特石漠化防治工程技术研究中心, 贵阳 550001;
3. 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
摘要:农业生产过程是大气温室气体(Greenhouse gas,GHG)一个重要的排放源。20世纪30年代以来,为了防止土壤侵蚀和沙尘暴,许多国家和地区发展并推广了保护性耕作(简称保耕)。近年来,越来越多的研究开始关注保耕对土壤GHG排放和固碳的影响。本文综述了我国近期发表的文章,重点分析了我国保耕措施对农田GHG(CO2、CH4、N2O)排放、固碳以及综合全球增温潜势的影响。结果表明:保耕措施中秸秆还田能促进土壤呼吸,如果将秸秆制成生物炭则对CO2排放影响很小,免耕能减少土壤呼吸;水稻田秸秆还田促进了CH4的排放,提高程度从10%~400%,并随着还田量和年限增加而增加,大部分研究也表明水稻田采用免耕降低了CH4排放;秸秆还田和免耕对土壤N2O排放具有复杂影响,与还田的秸秆量及其碳氮比、还田方式、气候条件和土壤环境等有关;秸秆还田提高了土壤有机碳含量,而免耕更多是改变了有机碳分布,使更多有机碳聚集于土壤表层;分析评价全球增温潜势时,如果考虑固碳作用,保耕措施将能减少GHG排放甚至使农田转变成碳汇。因此,保耕对全球增温潜势的影响评估应该考虑土壤固碳作用,推广保耕整套技术体系应因地制宜,同时与其他推荐措施相结合,从而实现生态效益和经济效益的双赢。
关键词二氧化碳    土壤固碳    甲烷    秸秆还田    免耕    全球增温潜势    氧化亚氮    
Impacts of conservation tillage on greenhouse gas emissions from cropland in China: A review
ZHANG Guo1,2 , WANG Xiao-ke3     
1. Institute of Karst Research, Guizhou Normal University, Guiyang 550001 China;
2. State Engineering Technology Institute for Karst Desertfication Control, Guiyang 550001, China;
3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract: Crop production is one important source of greenhouse gas(GHG)in the world. Conservation tillage(CT), as effective practices to prevent soil erosion and dust storm, recently has been paid attention because of its contribution to soil GHG emission and carbon sequestration(SCS). We reviewed some newly published paper reporting the impacts of CT on emissions of CO2, CH4, N2O, SCS and their global warming potential(GWP)in China. The results showed:straw retention increased CO2 emission but the application of biochar made from straw did not. No-till generally decreased soil respiration. CH4 emission was increased by 10%~400% when straw returned in rice paddies, and become more when both the amount of straw returned increased and the period of straw retention lasted. Straw retention and no-till had complex effects on N2O emission depending on the amounts and C/N ratio of straw returned, retention types, climate and soil properties. Straw retention increased SCS, while no-till altered the vertical distribution of soil organic carbon and concentrated more carbon in the upper layer of soil. CT decreased net GHG emission and even converted some arable fields from carbon pool to sink if SCS was taken into account in GWP calculation. So the extension of CT is important for mitigation GHG emission from cropland.
Keywords: carbon dioxide emission    soil carbon sequestration    methane emission    straw retention    no-till    global warming potential    nitrous oxide emission    

大气中温室气体(Greenhouse gas,GHG)含量的增加是引起全球变暖的重要原因。从1750—2010年大气中二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)含量分别增加了40%、150%和20%[1],特别是CO2浓度从277 μL·L-1增长到407 μL·L-1[2]。2010年全球农业贡献了14%的GHG净排放[1]。农作物生产措施会直接或间接影响GHG排放:翻耕、秸秆焚烧、氮肥使用、水稻生产等直接促进土壤GHG排放,机械化措施和化肥、农药的生产都依赖于化石能源使用从而间接排放GHG[3]。因此,采取适宜的农业固碳减排措施,对温室气体减排具有重要意义。

保护性耕作(简称保耕)是世界农业生产中一项重要的推荐措施。为了防止发生像“黑风暴”和水土流失等严重的环境危害,20世纪30年代保耕技术在美国发展起来,并逐渐得到世界许多国家和地区的认同和推广[4]。20世纪90年代我国开始发展机械化免耕技术,2002年原农业部正式将保耕定义为“对农田实行免耕、少耕、并用作物秸秆覆盖地表,以减少风蚀,提高土壤肥力和抗旱能力的先进农业耕作技术”,并从国家层面上进行推广[5]。2015年原农业部等部委发布了《全国农业可持续发展规划(2015—2030年)》,继续将保耕作为增加土壤有机质和提升肥力的重要措施。2017年我国保耕面积达到758.4万hm2,机械化秸秆还田面积、免耕面积和深松面积分别为5003.3万、1 411.6万hm2和1 112.1万hm2 [6]。这些措施逐渐发展成系统性的保耕,发挥着防止水土流失、培肥地力、固碳减排和减少生产成本的功能。

我国保耕技术因各地不同气候及种植模式表现出差异。我国农作物生产具有熟制多样性、耕地规模小和南方机械化程度低以及秸秆竞争利用等特点,这决定了保耕模式的多样化和类型复杂化[5]。但保耕也具有一些共性的关键技术:(1)少免耕;(2)秸秆还田;(3)杂草及病虫害防治;(4)机械深松[7]。秸秆还田和少免耕是保耕的基本原则,因此我国研究格外关注它们对生态效益的影响[8-9]。我国与保耕相关的研究从2002年开始逐渐增多,内容从传统研究保耕对作物产量、土壤肥力、经济效益等的影响,发展到目前研究保耕对土壤有机碳(Soil organic carbon,SOC)和GHG等的影响[10]。虽然有些综述[11-13]或Meta分析[14-15]讨论了保耕对GHG排放或者土壤固碳(Soil carbon sequestration,SCS)的影响,但当前缺乏对这些影响进行综合分析的综述文章。因此本文选取近期文章,分析了我国保耕对农田GHG(CO2、CH4、N2O)排放和固碳作用的影响,并获取或计算了土壤全球增温潜势(Global warming potential,GWP):GWPsoil=GWPN2O+GWPCH4–SCS。据此本文阐明了:(1)保耕措施对不同土壤GHG排放和SCS的影响;(2)不同地区和作物的保耕措施对土壤GWP影响的差异,以期为国家推广适宜不同作物和环境条件的保耕措施提供建议,从而提升土壤有机质和肥力,推进秸秆全量化利用和固碳减排,同时为科学全面地评价保耕技术和未来的保耕研究提供参考。

1 保护性耕作对GHG排放的影响

保耕主要包括秸秆还田和少免耕等措施,这些措施改变了土壤物理、化学和SOC等性质,这些性质特别是SOC进一步影响了微生物的分解、厌氧发酵、硝化和反硝化等有关GHG排放和固碳过程(图 1[16]

图 1 保护性耕作对土壤温室气体排放和固碳的影响 Figure 1 Impacts of conservation tillage on soil greenhouse gas emission and carbon sequestration(SCS)
1.1 CO2排放

秸秆还田腐解后能有效增加土壤孔隙度,并且能提高SOC含量,因此促进了土壤呼吸和CO2排放[17]。一些研究发现,对于东北地区单季玉米[18]、华北冬小麦-夏玉米[19]、华南地区水稻-小麦轮作[20]等,秸秆还田提高了7%~45%的CO2排放量(表 1)。随着还田量的增加,CO2排放量也逐渐增加[21-23]。一些研究发现西北干旱地区和内蒙古秸秆还田降低了6%~20%的CO2排放量[24-27],原因可能是:(1)秸秆覆盖降低了土壤温度;(2)秸秆覆盖阻碍了CO2从土壤向大气排放;(3)秸秆覆盖与土壤接触面小导致分解速率低[28]。通常秸秆还田能促进土壤CO2排放,但是夏文斌等[29]研究发现秸秆制成的生物炭对土壤呼吸影响很小。

表 1 我国保护性耕作对土壤温室气体排放的影响 Table 1 Impacts of conservation tillage(CT)on soil greenhouse gas emission

河北[40]、陕西[65]和湖北[23]的研究发现免耕约减少40%的CO2排放(表 1)。免耕减少土壤呼吸,是因为免耕使作物残渣覆盖在地表,减少与土壤接触和分解,同时避免耕作破坏团聚体结构[66-67]。保耕过程中免耕减排和秸秆还田促进作用部分抵消,使保耕整体减少了CO2排放[25, 37],同时免耕使秸秆分解速率低于翻入土壤的秸秆分解速率[66]

1.2 CH4排放

土壤CH4排放涉及厌氧环境下的产甲烷菌和甲烷氧化菌参与的一系列反应[68]。土壤CH4排放主要来源于水稻田。旱田特别是西北干旱地区土壤能够吸收CH4,表现出弱汇的作用(表 1[24-25]。南方水旱轮作情况下,处于旱作的农田呈现弱源或弱汇的态势[20, 46, 69-70]。由于水分是微生物分解SOC的限制因素,保耕对这两种条件下CH4吸收影响比较小[25, 32, 42]

保耕技术对CH4的影响研究主要集中于厌氧环境的稻田。秸秆还田可以促进CH4的排放,提高程度从10%~400%[45, 71]表 1)。随着还田量增加[51]或还田年限[47]延长,CH4的排放量也会增加。CH4排放增加是因为秸秆为产甲烷菌提供了丰富底物,同时分解过程消耗氧气又增强了厌氧环境,抑制了甲烷氧化菌的活性[72]。有的研究发现秸秆还田降低了CH4排放[57, 73],这可能是因为还田秸秆富集于土壤表层而进行有氧分解产生CO2[72]。与秸秆还田相比,使用秸秆来源的生物炭对CH4排放影响较小,可能是由于来源于秸秆的生物炭不易被产甲烷菌分解利用。大部分研究表明少免耕降低了CH4排放[56-57],是因为免耕阻止了土壤CH4扩散,增强甲烷氧化菌活性,导致CH4排放减少[74]。Zhao等[15]进行Meta分析表明,与翻耕相比,免耕条件下的稻田CH4排放减少了30%。也有研究表明免耕促进了CH4产生[63-64, 75],原因可能是免耕可以更好地维持缺氧环境而产生更多的CH4[64]

1.3 N2O排放

土壤N2O排放主要来源于微生物参与的土壤硝化和反硝化过程[76]。国内学者针对秸秆还田对农田N2O排放的影响及机理仍然缺乏一致结论。在旱地中,辽宁沈阳玉米种植实验[32]、河北栾城的冬小麦-夏玉米种植实验[37]都表明多年秸秆还田一般促进了N2O的排放,原因是C/N低的秸秆还田促进微生物的硝化、反硝化作用[74]。也有一些研究发现秸秆还田抑制了N2O排放,可以减少1%~49%[20, 61]表 1),原因是秸秆C/N较高而宜于微生物分解利用,减少了硝化与反硝化作用的基质,减少了N2O排放[77]。Shan等[78]利用Meta分析了秸秆还田对N2O排放的影响,得出了秸秆还田不会显著影响N2O排放的结论。不同的秸秆还田量和还田方式、秸秆C/N等都会对N2O排放产生不同的影响[72]

免耕对于N2O排放的影响同样表现出促进[41, 57, 79]或抑制作用[9, 25, 50]表 1),这与气候类型和土壤性质的差异有关。在干燥的气候条件下,免耕增加通气条件差的土壤N2O排放,对通气好的土壤影响不大,湿润条件下土壤结论也不一致[74]。Zhao等[15]通过对我国39个研究进行Meta分析,表明稻田中还田结合免耕显著增加了82%的N2O排放。由于秸秆还田和免耕对N2O排放影响的复杂性,故不同研究发现保耕对N2O排放具有促进作用[9, 79]和抑制作用[37, 49],因此仍需要进一步研究。

2 保护性耕作对SCS的影响

IPCC认为89%的农业GHG减排潜力在于提高SCS水平[80]。Jiang等[32]在辽宁单季玉米种植过程中,对照SOC以0.02 t C·hm-2·a-1速率减少,而以4000、8000 kg干秸秆·hm-2还田处理的SOC含量分别以0.48、1.03 t C·hm-2·a-1速率增加(表 2)。近期研究表明,秸秆还田的SCS提高了50%~2240%[51, 62]。Xu等[81]分析了自第二次国土普查数据到2010年文献数据,发现近30年来我国农田表土SOC增加了0.07±0.31 Pg C(固碳速率为0.013±0.003 Pg C·a-1),主要原因是秸秆还田等措施。Zhao等[14]利用Meta分析了2013年前的76篇文献,发现秸秆还田相比不还田能增加12%的SOC含量,如果全国进一步推广,SOC将每年增加0.052 Pg C。秸秆还田增加SOC含量是因为投入的新鲜有机质被微生物分解转化,形成了难分解的SOC贮存,同时促进了团聚体对SOC的保护作用[82]

表 2 我国保护性耕作对土壤固碳和增温潜势的影响 Table 2 Impacts of conservation tillage(CT)on soil carbon sequestration(SCS)and global warming potential (GWP)in China

一些免耕研究表明其能增加SOC含量[55, 64]表 2),但是不同研究对于免耕的固碳作用存在争议。Baker等[83]通过研究农田深度30 cm土壤发现免耕不会增加SOC,只使更多SOC聚集于土壤表层。Luo等[84]采用Meta方法分析了69对取样深于40 cm的免耕/翻耕实验,结果表明两者SOC变化没有显著差异,从翻耕改成免耕除了双季制能增加SOC含量外,其他种植制度只是改变了SOC分布。虽然单纯免耕不能增加SOC含量,但能避免对团聚体的破坏而保护SOC,同时减少了燃料消耗而产生的GHG排放[3]。因此,综合考虑,免耕在结合调整种植制度等措施的情况下能够发挥固碳减排作用。

3 保护性耕作对土壤GWP的影响

在不考虑SCS的情况下,秸秆还田条件下土壤GWP一般比对照高9%~45%(表 2),原因是促进了CH4的排放[18, 47]。一些研究将SCS纳入GWP的计算,发现土壤呈现碳汇状况(表 2),如Jiang等[32]研究表明一年一季玉米不还田土壤GWP为492 kg CO2-eq·hm-2·a-1,而秸秆还田GWP为-3040 kg CO2-eq·hm-2·a-1。李柘锦等[35]发现不还田对照和还田处理的土壤GWP都为负值,分别为-526、-1294 kg CO2-eq·hm-2。有的研究进一步考虑了作物固碳作用[19, 38],但Piao等[86]认为每季作物都会收获并通过食物网重新释放CO2到大气,因此生物量增长并不会对碳储存做出实际贡献。

4 讨论

我国保耕对土壤GHG排放和SCS影响的研究存在不一致甚至相互矛盾的结果,原因是保耕同时改变了土壤物理、化学和生物等性质[16],这些改变结合我国差异较大的气候和土壤性质导致了不同的研究结果。

保耕对稻田CH4和N2O的排放有着复杂的影响。有Meta分析表明我国稻田采用免耕显著降低了30%的CH4排放,然而却增加了N2O的排放;与翻耕不还田相比,免耕结合秸秆还田显著增加了82%的N2O排放[15]。也有Meta分析表明我国秸秆还田增加了24%的CO2、12%的N2O和27%的CH4排放[87]。史然等[11]综述一些研究认为稻田秸秆还田会显著增加CH4排放,但对N2O的影响不一致,即水旱轮作下能减少N2O排放,但双季稻田则表现出N2O排放增加。Liu等[87]认为秸秆还田减少N2O排放的原因是由于下面两个因素抑制了反硝化作用:(1)秸秆腐烂导致了厌氧环境;(2)单独利用高C/N(>30)秸秆会促进土壤氮元素固定。因此,保耕对GHG排放的影响受到各种环境因素的限制。

农田SCS是土壤将大气CO2以SOC形式进行贮存[88]。只有少部分研究在计算保耕对GHG净排放时考虑了SCS[32, 73],是因为一个作物季内SOC变化难以测定甚至被认为可以忽略不计[89]。Peters[90]和Zhang等[3]认为作物生产中GHG排放应该考虑SCS因素,若不考虑就会忽略农田是碳汇的情况[32, 35]。Meta分析表明,与不还田相比,我国秸秆还田下0~20 cm SOC以0.35 t C·hm-2·a-1增加,并且SCS可持续28~62年[91]。在综合计算土壤GWP时,应该考虑固碳作用,只有这样才能认识到保耕措施有可能使农田从碳源转变成碳汇。对于生物量,作物成熟后收获进入食物网再将CO2释放,因此生物量变化一般不会对SCS产生影响[86]。由于秸秆等有机物质分解转化成SOC是一个长期过程,因此应考虑如何将不同时间尺度上的SCS与GHG排放结合以准确计算土壤GWP。

保耕下的SCS属于土壤碳循环的一部分。计算SCS是通过比较措施实施前后SOC的变化,结果反映了土壤碳输入和碳输出的差值。土壤呼吸实质是一种碳输出,因此计算土壤GWP,避免将土壤呼吸和SCS简单加减,这样可能会产生CO2排放的重复计算[38]。保耕对SCS影响的长期性需要建立长期定位监测站和全国监测网络,从而全面、系统地理解保耕对土壤SCS和GHG排放的影响机理。

保耕技术和其他推荐措施结合才能更有效地发挥固碳减排作用[92]。2011年我国主粮生产所用氮肥若按国家推荐量,会减少10%的N2O排放量[93]。Meta分析表明与连续淹水相比,稻田间歇灌溉减少了52%的CH4排放却增加了242%的N2O排放,土壤GWP则降低了47%[94]。保耕推广若结合施用生物炭、测土精准施肥、有机无机肥料优化使用等推荐措施,可以提高固碳0.025 Pg C·a-1[95]。另外,施用CH4抑制剂、脲酶抑制剂及硝化抑制剂、缓释/控释肥和种植低排放的水稻品种可以降低稻田GHG排放。由此可见,结合适宜的农田管理措施,可以充分发挥保耕在固碳减排方面的潜力。

5 研究展望

尽管我国保耕得到很大推广,但是2017年保耕面积仍然只占农作物总播种面积的4.5%[6]。很多研究证明保耕可以提高土壤养分、有机质和作物产量[96]。结合国家层面进一步推广保耕,需要深入系统了解全国不同区域保耕对土壤GWP的影响,为科学全面地评价保耕技术的生态效益提供参考。

(1)综合评估整套保耕体系的GHG减排效果。目前我国的保耕技术侧重于秸秆还田和免耕而忽视深松技术,缺少农户采用整套保耕体系。国外保耕优势是通过多种措施构成的完整体系实现的,因此我国需要研究适宜于不同区域的完整保耕体系。保耕体系因各地气候及种植模式差异发展出不同模式:如东北地区采取高垄种植避免还田导致的低温;而干旱少雨的西北地区采用整秸覆盖或翻压还田以减少水分的蒸发。在秸秆作为饲料和燃料的地区,需要开拓其他饲料和燃料来源以保证足够的秸秆还田。因此,应该综合评估整套保耕体系进行过程的GHG排放和SCS。

(2)减少评估参数的不确定性。保耕体系中关键技术对土壤GHG排放和SCS产生的影响复杂。不同区域的保耕措施对土壤GWP影响具有明显的区域特征,需要在全国不同农业试验站点进行联网研究,建立相应的保耕措施对GHG影响评估的参数和方法。由于试验田研究结果与农户实际大田种植的结果可能存在差异,因此应该考虑保耕在大田推广时的实际影响。

(3)评估保耕对土壤GWP的影响需要科学考虑SCS。土壤呼吸和固碳作用都是土壤碳循环的表现,评估时需要界定边界以避免少算或重复计算。在短期评估时(如1~2 a内),要同时考虑CO2的排放和吸收。在长期评估时(如>5 a),要重点考虑SCS作用。

(4)开展全过程评估:保耕对GHG的影响只是整个农业生产对大气GHG影响的重要一环。在农业生产中,各种机械使用消耗能源也会排放GHG,因此,研究保耕对GHG的影响应考虑与农业生产(包括保耕)相关的各种GHG排放源。作物碳足迹是计算作物整个生命周期的GHG动态变化[3],因此可以将作物碳足迹评估引进到保耕体系对GHG排放影响的评估过程。

参考文献
[1]
IPCC. Climate change 2014: Synthesis report[R]. Geneva, Switzerland: IPCC, 2014.
[2]
Friedlingstein P, Jones M W, O' Sullivan M, et al. Global carbon budget 2019[J]. Earth System Science Data Discussions, 2019, 11(4): 1783-1838.
[3]
Zhang G, Wang X K, Zhang L, et al. Carbon and water footprints of major cereal crops production in China[J]. Journal of Cleaner Production, 2018, 194: 613-623.
[4]
宋玉洁, 胡军. 我国不同地区保护性耕作技术使用情况的探讨[J]. 农业机械, 2016(12): 93-96.
SONG Yu-jie, HU Jun. Study on application of conservation tillage in different areas in China[J]. Farm Machinery, 2016(12): 93-96.
[5]
高旺盛. 中国保护性耕作制[M]. 北京: 中国农业大学出版社, 2011.
GAO Wang-sheng. Conservation farming system in China[M]. Beijing: China Agricultural University Press, 2011.
[6]
中国农业机械工业学会. 中国农业机械工业年鉴2018[M]. 北京: 机械工业出版社, 2018.
Chinese Society of Agricultural Machinery Industry. China agricultural machinery industry yearbook[M]. Beijing: China Machine Press, 2018.
[7]
位国建, 荐世春, 方会敏, 等. 北方旱作区保护性耕作技术研究现状及展望[J]. 中国农机化学报, 2019, 40(3): 195-200, 211.
WEI Guo-jian, JIAN Shi-chun, FANG Hui-min, et al. Current situation and prospect of conservation tillage technology in dry-farming areas of north China[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 195-200, 211.
[8]
Zhang J, Hang X N, Lamine S M, et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system[J]. Agriculture, Ecosystems & Environment, 2017, 250: 37-43.
[9]
Zhang L, Zheng J C, Chen L G, et al. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice-wheat cropping system[J]. European Journal of Agronomy, 2015, 63: 47-54.
[10]
刘丽, 白秀广, 姜志德. 国内保护性耕作研究知识图谱分析:基于CNKI的数据[J]. 干旱区资源与环境, 2019, 33(4): 76-81.
LIU Li, BAI Xiu-guang, JIANG Zhi-de. Knowledge map of domestic research on conservation tillage[J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 76-81.
[11]
史然, 陈晓娟, 沈建林, 等. 稻田秸秆还田的土壤增碳及温室气体排放效应和机理研究进展[J]. 土壤, 2013, 45(2): 1193-1198.
SHI Ran, CHEN Xiao-juan, SHEN Jian-lin, et al. A review on application of rice straw in soil carbon sequestration and greenhouse gases emission in paddy ecosystems[J]. Soils, 2013, 45(2): 1193-1198.
[12]
Lu F, Wang X K, Han B, et al. Net mitigation potential of straw return to Chinese cropland:Estimation with a full greenhouse gas budget model[J]. Ecological Applications, 2010, 20(3): 634-647.
[13]
Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland[J]. Global Change Biology, 2009, 15(2): 281-305.
[14]
Zhao H, Sun B F, Lu F, et al. How can straw incorporation management impact on soil carbon storage? A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change, 2014, 20(8): 1545-1568.
[15]
Zhao X, Liu S L, Pu C, et al. Methane and nitrous oxide emissions under no-till farming in China:A meta-analysis[J]. Global Change Biology, 2016, 22(4): 1372-1384.
[16]
Busari M A, Kukal S S, Kaur A, et al. Conservation tillage impacts on soil, crop and the environment[J]. International Soil and Water Conservation Research, 2015, 3(2): 119-129.
[17]
郝帅帅, 顾道健, 陶进, 等. 秸秆还田对稻田土壤和温室气体排放的影响[J]. 中国稻米, 2016, 22(5): 6-9.
HAO Shuai-shuai, GU Dao-jian, TAO Jin, et al. Effects of residue returning on paddy soil and greenhouse gas emissions[J]. China Rice, 2016, 22(5): 6-9.
[18]
吕艳杰, 于海燕, 姚凡云, 等. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响[J]. 中国生态农业学报, 2016, 24(11): 1456-1463.
LÜ Yan-jie, YU Hai-yan, YAO Fan-yun, et al. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1456-1463.
[19]
裴淑玮, 张圆圆, 刘俊锋, 等. 施肥及秸秆还田处理下玉米季温室气体的排放[J]. 环境化学, 2012, 31(4): 407-414.
PEI Shu-wei, ZHANG Yuan-yuan, LIU Jun-feng, et al. Greenhouse gas emission under the treatments of fertilization and wheat straw returning during the maize growing seasons[J]. Environmental Chemistry, 2012, 31(4): 407-414.
[20]
牛东, 潘慧, 丛美娟, 等. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响[J]. 麦类作物学报, 2016, 36(12): 1667-1673.
NIU Dong, PAN Hui, CONG Mei-juan, et al. Effect of nitrogen application ratio and straw returning on soil greenhouse gas emission during wheat growing period[J]. Journal of Triticeae Crops, 2016, 36(12): 1667-1673.
[21]
蒙世协, 刘春岩, 郑循华, 等. 小麦秸秆还田量对晋南地区裸地土壤:大气间甲烷、二氧化碳、氧化亚氮和一氧化氮交换的影响[J]. 气候与环境研究, 2012, 17(4): 504-514.
MENG Shi-xie, LIU Chun-yan, ZHENG Xun-hua, et al. Effects of the applied amount of wheat straw on methane, carbon dioxide, nitrous oxide, and nitric oxide fluxes of a bare soil in south Shanxi[J]. Climatic and Environmental Research, 2012, 17(4): 504-514.
[22]
Wang W Y, Akhtar K, Ren G X, et al. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China[J]. Science of the Total Environment, 2019, 652: 471-482.
[23]
Zhang Z S, Cao C G, Guo L J, et al. Emissions of CH4 and CO2 from paddy fields as affected by tillage practices and crop residues in central China[J]. Paddy and Water Environment, 2016, 14(1): 85-92.
[24]
吕锦慧, 武均, 张军, 等. 不同耕作措施下旱作农田土壤CH4、CO2排放特征及其影响因素[J]. 干旱区资源与环境, 2018, 32(12): 26-33.
LÜ Jin-hui, WU Jun, ZHANG Jun, et al. Characteristics and influencing factors of soil CH4 and CO2 emissions under different tillage measures[J]. Journal of Arid Land Resources and Environment, 2018, 32(12): 26-33.
[25]
Yeboah S, Zhang R Z, Cai L Q, et al. Greenhouse gas emissions in a spring wheat-field pea sequence under different tillage practices in semi-arid northwest China[J]. Nutrient Cycling in Agroecosystems, 2016, 106(1): 77-91.
[26]
Hu F L, Chai Q, Yu A Z, et al. Less carbon emissions of wheat-maize intercropping under reduced tillage in arid areas[J]. Agronomy for Sustainable Development, 2015, 35(2): 701-711.
[27]
程功, 刘廷玺, 李东方, 等. 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响[J]. 中国生态农业学报(中英文), 2019, 27(7): 1004-1014.
CHENG Gong, LIU Ting-xi, LI Dong-fang, et al. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1004-1014.
[28]
Al-Kaisi M M, Yin X H. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations[J]. Journal of Environmental Quality, 2005, 34(2): 437-445.
[29]
夏文斌, 张旭辉, 刘铭龙, 等. 麦秆还田方式对旱地土壤综合温室效应的影响[J]. 土壤, 2014, 46(6): 1010-1016.
XIA Wen-bin, ZHANG Xu-hui, LIU Ming-long, et al. Effects of wheat straw return ways on integrated global warming effect from dryland soil in North China Plain[J]. Soils, 2014, 46(6): 1010-1016.
[30]
武开阔, 张丽莉, 宋玉超, 等. 稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响[J]. 应用生态学报, 2019, 30(4): 1287-1294.
WU Kai-kuo, ZHANG Li-li, SONG Yu-chao, et al. Effects of stabilized N fertilizer combined with straw returning on rice yield and emission of N2O and CH4 in a paddy field[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1287-1294.
[31]
韩圆圆, 曹国军, 耿玉辉, 等. 农业废弃物还田对黑土温室气体排放及全球增温潜势的影响[J]. 华南农业大学学报, 2017, 38(5): 36-42.
HAN Yuan-yuan, CAO Guo-jun, GENG Yu-hui, et al. Effects of agricultural wastes on greenhouse gas emission and global warming potential in black soil[J]. Journal of South China Agricultural University, 2017, 38(5): 36-42.
[32]
Jiang C M, Yu W T, Ma Q, et al. Alleviating global warming potential by soil carbon sequestration:A multi-level straw incorporation experiment from a maize cropping system in northeast China[J]. Soil and Tillage Research, 2017, 170: 77-84.
[33]
叶桂香, 史永晖, 王良, 等. 秸秆还田的小麦-玉米农田N2O周年排放的量化分析[J]. 植物营养与肥料学报, 2017, 23(3): 589-596.
YE Gui-xiang, SHI Yong-hui, WANG Liang, et al. Quantitative analysis of straw returning on annual soil N2O in the wheat-maize rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 589-596.
[34]
谭月臣, 诸葛玉平, 刘东雪, 等. 华北平原农田管理措施对冬小麦-夏玉米轮作系统N2O和CH4排放的影响[J]. 环境科学学报, 2016, 36(7): 2638-2649.
TAN Yue-chen, ZHUGE Yu-ping, LIU Dong-xue, et al. Effect of farmland management on N2O and CH4 emission from winter wheatsummer maize rotation system in North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2638-2649.
[35]
李柘锦, 隋鹏, 龙攀, 等. 不同有机物料还田对农田系统净温室气体排放的影响[J]. 农业工程学报, 2016, 32(增刊2): 111-117.
LI Zhe-jin, SUI Peng, LONG Pan, et al. Effects of different organic wastes application on net greenhouse gas emission in farmland system[J]. Transactions of the CSAE, 2016, 32(Suppl2): 111-117.
[36]
徐钰, 刘兆辉, 朱国梁, 等. 不同农业管理措施对华北地区麦田温室气体排放的影响[J]. 中国土壤与肥料, 2016(2): 7-13.
XU Yu, LIU Zhao-hui, ZHU Guo-liang, et al. Effects of greenhouse gas emission under different agricultural management practices in wheat field in the North China Plain[J]. Soils and Fertilizers Sciences in China, 2016(2): 7-13.
[37]
闫翠萍, 张玉铭, 胡春胜, 等. 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J]. 中国生态农业学报, 2016, 24(6): 704-715.
YAN Cui-ping, ZHANG Yu-ming, HU Chun-sheng, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of EcoAgriculture, 2016, 24(6): 704-715.
[38]
李新华, 朱振林, 董红云, 等. 秸秆不同还田模式对玉米田温室气体排放和碳固定的影响[J]. 农业环境科学学报, 2015, 34(11): 2228-2235.
LI Xin-hua, ZHU Zhen-lin, DONG Hong-yun, et al. Effects of different return modes of wheat straws on greenhouse gas emissions and carbon sequestration of maize fields[J]. Journal of Agro-Environment Science, 2015, 34(11): 2228-2235.
[39]
蔡延江, 丁维新, 朱安宁, 等. 免耕对华北平原潮土N2O和CO2排放的影响[J]. 生态与农村环境学报, 2011, 27(5): 1-6.
CAI Yan-jiang, DING Wei-xin, ZHU An-ning, et al. Effects of nontillage on N2O and CO2 emissions from sandy loam soil in the North China Plain[J]. Journal of Ecology and Rural Environment, 2011, 27(5): 1-6.
[40]
万运帆, 李玉娥, 高清竹, 等. 田间管理对华北平原冬小麦产量土壤碳及温室气体排放的影响[J]. 农业环境科学学报, 2009, 28(12): 2495-2500.
WAN Yun-fan, LI Yu-e, GAO Qing-zhu, et al. Field managements affect yield, soil carbon, and greenhouse gases emission of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(12): 2495-2500.
[41]
Niu Y H, Cai Y J, Chen Z M, et al. No-tillage did not increase organic carbon storage but stimulated N2O emissions in an intensively cultivated sandy loam soil:A negative climate effect[J]. Soil and Tillage Research, 2019, 195: 104419.
[42]
Tan Yu C, Wu D, Bol R, et al. Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields[J]. Agriculture, Ecosystems & Environment, 2019, 272: 266-275.
[43]
Hu N J, Wang B J, Gu Z H, et al. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system[J]. Agriculture, Ecosystems & Environment, 2016, 223: 115-122.
[44]
杭玉浩, 王强盛, 许国春, 等. 水分管理和秸秆还田对稻麦轮作系统温室气体排放的综合效应[J]. 生态环境学报, 2017, 26(11): 1844-1855.
HANG Yu-hao, WANG Qiang-sheng, XU Guo-chun, et al. Effects of water regimes and straw incorporation on greenhouse gas emissions in a rice-wheat cropping system[J]. Ecology and Environmental Sciences, 2017, 26(11): 1844-1855.
[45]
王保君, 胡乃娟, 顾泽海, 等. 稻秆还田方式对稻麦轮作农田CH4和N2O排放的影响[J]. 南京农业大学学报, 2017, 40(3): 367-375.
WANG Bao-jun, HU Nai-juan, GU Ze-hai, et al. Impact of rice straw return methods on CH4 and N2O emissions across a rice-wheat rotation[J]. Journal of Nanjing Agricultural University, 2017, 40(3): 367-375.
[46]
王祥菊, 周炜, 王子臣, 等. 土壤耕作与秸秆还田对小麦产量及麦季温室气体排放的影响[J]. 扬州大学学报(农业与生命科学版), 2016, 37(3): 101-106.
WANG Xiang-ju, ZHOU Wei, WANG Zi-chen, et al. Effects of soil tillage and straw return on wheat yield and greenhouse gas emission[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2016, 37(3): 101-106.
[47]
张翰林, 吕卫光, 郑宪清, 等. 不同秸秆还田年限对稻麦轮作系统温室气体排放的影响[J]. 中国生态农业学报, 2015, 23(3): 302-308.
ZHANG Han-lin, LÜ Wei-guang, ZHENG Xian-qing, et al. Effects of years of straw return to soil on greenhouse gas emission in rice/wheat rotation systems[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 302-308.
[48]
张岳芳, 陈留根, 朱普平, 等. 秸秆还田对稻麦两熟高产农田净增温潜势影响的初步研究[J]. 农业环境科学学报, 2012, 31(8): 1647-1653.
ZHANG Yue-fang, CHEN Liu-gen, ZHU Pu-ping, et al. Preliminary study on effect of straw incorporation on net global warming potential in high production rice-wheat double cropping systems[J]. Journal of Agro-Environment Science, 2012, 31(8): 1647-1653.
[49]
张岳芳, 郑建初, 陈留根, 等. 麦秸还田与土壤耕作对稻季CH4和N2O排放的影响[J]. 生态环境学报, 2009, 18(6): 2334-2338.
ZHANG Yue-fang, ZHENG Jian-chu, CHEN Liu-gen, et al. Effects of wheat straw returning and soil tillage on CH4 and N2O emissions in paddy season[J]. Ecology and Environmental Sciences, 2009, 18(6): 2334-2338.
[50]
Zhang Z S, Guo L J, Liu T Q, et al. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China[J]. Atmospheric Environment, 2015, 122: 636-644.
[51]
Xia L L, Wang S W, Yan X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China[J]. Agriculture, Ecosystems & Environment, 2014, 197: 118-127.
[52]
Yao Z S, Zheng X H, Wang R, et al. Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices[J]. Atmospheric Environment, 2013, 79: 641-649.
[53]
Ma E D, Zhang G B, Ma J, et al. Effects of rice straw returning methods on N2O emission during wheat-growing season[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3): 463-469.
[54]
代光照, 李成芳, 曹凑贵, 等. 免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响[J]. 应用生态学报, 2009, 20(9): 2166-2172.
DAI Guang-zhao, LI Cheng-fang, CAO Cou-gui, et al. Effects of notillage and fertilization on paddy soil CH4 and N2O emissions and their greenhouse effect in central China[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2166-2172.
[55]
李成芳, 曹凑贵, 汪金平, 等. 不同耕作方式下稻田土壤CH4和CO2的排放及碳收支估算[J]. 农业环境科学学报, 2009, 28(12): 2482-2488.
LI Cheng-fang, CAO Cou-gui, WANG Jin-ping, et al. CH4 and CO2 emissions from paddy soils and assessment of carbon budget in different tillage systems[J]. Journal of Agro-Environment Science, 2009, 28(12): 2482-2488.
[56]
Zhang Z S, Chen J, Liu T Q, et al. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China[J]. Atmospheric Environment, 2016, 144: 274-281.
[57]
秦晓波, 李玉娥, 万运帆, 等. 耕作方式和稻草还田对双季稻田CH4和N2O排放的影响[J]. 农业工程学报, 2014, 30(11): 216-224.
QIN Xiao-bo, LI Yu-e, WAN Yun-fan, et al. Effect of tillage and rice residue return on CH4 and N2O emission from double rice field[J]. Transactions of the CSAE, 2014, 30(11): 216-224.
[58]
白小琳, 张海林, 陈阜, 等. 耕作措施对双季稻田CH4与N2O排放的影响[J]. 农业工程学报, 2010, 26(1): 282-289.
BAI Xiao-lin, ZHANG Hai-lin, CHEN Fu, et al. Tillage effects on CH4 and N2O emission from double cropping paddy field[J]. Transactions of the CSAE, 2010, 26(1): 282-289.
[59]
伍芬琳, 张海林, 李琳, 等. 保护性耕作下双季稻农田甲烷排放特征及温室效应[J]. 中国农业科学, 2008, 41(9): 2703-2709.
WU Fen-lin, ZHANG Hai-lin, LI Lin, et al. Characteristics of CH4 emission and greenhouse effects in double paddy soil with conservation tillage[J]. Scientia Agricultura Sinica, 2008, 41(9): 2703-2709.
[60]
吴小红, 王卫, 侯海军, 等. 稻草还田方式对不同水分类型稻田土壤N2O排放的影响[J]. 生态环境学报, 2017, 26(9): 1501-1505.
WU Xiao-hong, WANG Wei, HOU Hai-jun, et al. Effects of straw return methods on N2O emissions from paddy soils under different water managements[J]. Ecology and Environmental Sciences, 2017, 26(9): 1501-1505.
[61]
Hu Q Y, Liu T Q, Jiang S S, et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China[J]. Journal of Soil Science and Plant Nutrition, 2019. DOI:10.1007/s42729-019-00120-0
[62]
Qi J Y, Wang X, Zhao X, et al. Temporal variability of soil organic carbon in paddies during 13-year conservation tillage[J]. Land Degradation & Development, 2019, 30(15): 1840-1850.
[63]
Zhang G B, Yu H Y, Fan X F, et al. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China[J]. Atmospheric Chemistry and Physics, 2016, 16(18): 11853-11866.
[64]
成臣, 曾勇军, 杨秀霞, 等. 不同耕作方式对稻田净增温潜势和温室气体强度的影响[J]. 环境科学学报, 2015, 35(6): 1887-1895.
CHENG Chen, ZENG Yong-jun, YANG Xiu-xia, et al. Effect of different tillage methods on net global warming potential and greenhouse gas intensity in double rice cropping systems[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1887-1895.
[65]
Lu X L, Lu X N, Tanveer S K, et al. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions[J]. Soil Research, 2016, 54(1): 38-48.
[66]
张文丽, 贾淑霞, 张延, 等. 长期保护性耕作对农田土壤水分和呼吸的影响[J]. 土壤与作物, 2019, 8(1): 23-31.
ZHANG Wen-li, JIA Shu-xia, ZHANG Yan, et al. Long-term conservation tillage effects on soil respiration and soil water content[J]. Soils and Crops, 2019, 8(1): 23-31.
[67]
Kasper M, Buchan G D, Mentler A, et al. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions[J]. Soil and Tillage Research, 2009, 105(2): 192-199.
[68]
Weller S, Kraus D, Ayag K P, et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 37-53.
[69]
盛海君, 牛东, 张莀茜, 等. 稻秸秆还田与腐熟剂对小麦当季温室气体排放的影响[J]. 扬州大学学报(农业与生命科学版), 2018, 39(2): 29-34.
SHENG Hai-jun, NIU Dong, ZHANG Chen-xi, et al. Impacs of microbial inoculants for straw decomposing on greenhouse gas emission in wheat season of the wheat-rice rotation system[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2018, 39(2): 29-34.
[70]
靳红梅, 沈明星, 王海候, 等. 秸秆还田模式对稻麦两熟农田麦季CH4和N2O排放特征的影响[J]. 江苏农业学报, 2017, 33(2): 333-339.
JIN Hong-mei, SHEN Ming-xing, WANG Hai-hou, et al. Influence of straw returning patterns on methane and nitrous oxide emission during wheat-growing season in a rice-wheat double cropping system[J]. Jiangsu Agricultural Sciences, 2017, 33(2): 333-339.
[71]
马煜春, 周伟, 刘翠英, 等. 秸秆腐熟剂对秸秆还田稻田CH4和N2O排放的影响[J]. 生态与农村环境学报, 2017, 33(2): 159-165.
MA Yu-chun, ZHOU Wei, LIU Cui-ying, et al. Effects of straw decomposing inoculants on methane and nitrous oxide emissions in paddy fields incorporated with straw[J]. Journal of Ecology and Rural Environment, 2017, 33(2): 159-165.
[72]
马小婷, 隋玉柱, 朱振林, 等. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展[J]. 江苏农业科学, 2017, 45(6): 14-20.
MA Xiao-ting, SUI Yu-zhu, ZHU Zhen-lin, et al. Impacts of straw retention on soil carbon pool and greenhouse gas emissions in cropland:A review[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 14-20.
[73]
李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362-2367.
LI Cheng-fang, KOU Zhi-kui, ZHANG Zhi-sheng, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields[J]. Journal of Agro-Environment Science, 2011, 30(11): 2362-2367.
[74]
李英臣, 侯翠翠, 李勇, 等. 免耕和秸秆覆盖对农田土壤温室气体排放的影响[J]. 生态环境学报, 2014, 23(6): 1076-1083.
LI Ying-chen, HOU Cui-cui, LI Yong, et al. Effects of no-till and straw mulch on greenhouse gas emission from farmland:A review[J]. Ecology and Environmental Sciences, 2014, 23(6): 1076-1083.
[75]
Zhang Y F, Sheng J, Wang Z C, et al. Nitrous oxide and methane emissions from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing season[J]. Soil and Tillage Research, 2015, 146: 261-269.
[76]
Millar N, Urrea A, Kahmark K, et al. Nitrous oxide(N2O)flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico[J]. Agriculture, Ecosystems & Environment, 2018, 261: 125-132.
[77]
贺京, 李涵茂, 方丽, 等. 秸秆还田对中国农田土壤温室气体排放的影响[J]. 中国农学通报, 2011, 27(20): 246-250.
HE Jing, LI Han-mao, FANG Li, et al. Influence of straw application on agricultural greenhouse gas emissions in China[J]. Chinese Agricultural Science Bulletin, 2011, 27(20): 246-250.
[78]
Shan J, Yan X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71: 170-175.
[79]
冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259.
FENG Jun-heng, HUANG Jin-feng, LIU Tian-qi, et al. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield[J]. Acta Agronomica Sinica, 2019, 45(8): 1250-1259.
[80]
IPCC. Good practice guidance and uncertainty management in national greenhouse gas inventories[R]. Kanagawa, Japan: IPCC/IGES, 2000.
[81]
Xu L, Yu G R, He N P. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s[J]. Journal of Geographical Sciences, 2019, 29(1): 49-66.
[82]
Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56.
[83]
Baker J M, Ochsner T E, Venterea R T, et al. Tillage and soil carbon sequestration:What do we really know?[J]. Agriculture, Ecosystems & Environment, 2007, 118(1/2/3/4): 1-5.
[84]
Luo Z K, Wang E L, Sun O J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments[J]. Agriculture, Ecosystems & Environment, 2010, 139(1/2): 224-231.
[85]
黄坚雄, 陈源泉, 刘武仁, 等. 不同保护性耕作模式对农田的温室气体净排放的影响[J]. 中国农业科学, 2011, 44(14): 2935-2942.
HUANG Jian-xiong, CHEN Yuan-quan, LIU Wu-ren, et al. Effect on net greenhouse gases emission under different conservation tillages in Jilin Province[J]. Scientia Agricultura Sinica, 2011, 44(14): 2935-2942.
[86]
Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.
[87]
Liu P, He J, Li H W, et al. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China:A meta-analysis[J]. International Journal of Plant Production, 2019, 13: 347-367.
[88]
Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
[89]
Wang W J, Dalal R C. Nitrogen management is the key for low-emission wheat production in Australia:A life cycle perspective[J]. European Journal of Agronomy, 2015, 66: 74-82.
[90]
Peters G P. Carbon footprints and embodied carbon at multiple scales[J]. Current Opinion in Environmental Sustainability, 2010, 2(4): 245-250.
[91]
Han X, Xu C, Dungait J A J, et al. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China:A system analysis[J]. Biogeosciences, 2018, 15(7): 1933-1946.
[92]
赵红.施肥及秸秆还田对中国农田土壤固碳、温室气体排放及粮食产量的影响[D].北京: 中国科学院大学, 2015.
ZHAO Hong. Impacts of fertilization and straw incorporation on soil carbon storage, greenhouse gas emissions and cereal yield in Chinese croplands[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[93]
Zhang G, Wang X K, Sun B F, et al. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland[J]. Agricultural Systems, 2016, 146: 1-10.
[94]
Liu X Y, Zhou T, Liu Y, et al. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem:A meta-analysis[J]. Agricultural Water Management, 2019, 213: 1028-1035.
[95]
Tao F L, Palosuo T, Valkama E, et al. Cropland soils in China have a large potential for carbon sequestration based on literature survey[J]. Soil and Tillage Research, 2019, 186: 70-78.
[96]
Chimsah F, Cai L Q, Wu J, et al. Outcomes of long-term conservation tillage research in northern China[J]. Sustainability, 2020, 12(3): 1-21.