文章摘要
邵在胜,沈士博,贾一磊,穆海蓉,王云霞,杨连新,王余龙.臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响[J].农业环境科学学报,2016,35(9):1642-1652.
臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响
Impact of ozone stress on element absorption and distribution of rice genotypes with different ozone sensitivities
投稿时间:2015-11-06  
DOI:10.11654/jaes.2015-1449
中文关键词: 水稻  臭氧  元素浓度  元素吸收  元素分配
英文关键词: rice  ozone stress  element concentration  element uptake  element allocation
基金项目:国家自然科学基金面上项目(31471437,31371563);土壤与农业可持续发展国家重点实验室开放基金(0812201233);2012年中德合作科研项目(PPP);江苏高校优势学科建设工程项目
作者单位E-mail
邵在胜 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
沈士博 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
贾一磊 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
穆海蓉 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
王云霞 扬州大学环境科学与工程学院, 江苏 扬州 225009 yxwang@yzu.edu.cn 
杨连新 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
王余龙 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心, 江苏 扬州 225009  
摘要点击次数: 2361
全文下载次数: 2392
中文摘要:
      利用新型自然光气体熏蒸平台,以23个水稻品种或株系为供试材料,设置室内对照(10.4 nL·L-1)和臭氧浓度增高(100 nL·L-1)处理,采用组内最小平方和的动态聚类方法,将供试材料按地上部最终生物量对臭氧胁迫的响应从小到大依次分为A、B和C类,研究不同敏感类型水稻营养器官中元素浓度、吸收与分配对臭氧胁迫的响应。臭氧熏蒸使A、B和C三类水稻地上部生物量平均分别下降19%、39%和52%,后两者达极显著水平。与对照相比,臭氧胁迫使稻草中N、P、K、Mg、Mn、Fe、Cu和Zn浓度显著或极显著增加(5%~42%),但对Ca浓度没有影响。与此相反,臭氧熏蒸使稻草中所有测定元素的吸收总量均呈下降趋势,其中N、P、K、Ca、Mg、Cu、Fe和Zn吸收量的降幅均达极显著水平(11%~34%)。多数情形下,茎鞘各元素浓度和吸收量对臭氧胁迫的响应大于叶片。与此相对应,臭氧胁迫使水稻吸收的元素向叶片中分配的比例增加,而向茎鞘分配的比例减少,导致叶片与茎鞘元素吸收量的比值大幅增加(32%~92%)。臭氧与水稻类型的互作对营养器官各元素浓度以及元素在茎叶中的分配比例多无显著影响,但对元素吸收量的影响多达显著或极显著水平,后者表现为臭氧胁迫下敏感水稻元素吸收的受抑程度更大。研究结果表明,与干净空气相比,100 nL·L-1臭氧浓度对水稻营养器官中各元素浓度、吸收和分配多有显著影响,其中元素吸收量对臭氧胁迫的响应明显受水稻敏感程度的影响。
英文摘要:
      In this study, 23 rice cultivars or lines were grown in glasshouse-type fumigation chambers at two ozone levels:low ozone concentration as control(C-O3, 10 nL·L-1) and high ozone concentration(E-O3, 100 nL·L-1) until rice maturity. Based on the decreases in the above-ground biomass under high ozone concentration, these rice genotypes were clustered into three groups by the MinSSw(dynamic clustering method-minimum sum of squares within groups) method, namely A, B and C in order of ozone sensitivity from low to high. The effect of ozone stress on element uptake and distribution in rice vegetative organs were then determined. At grain maturity, ozone stress decreased the above-ground biomass of rice by 19%, 39% and 52% for A, B and C group, respectively. Significant treatment effects were observed in groups B and C. Compared to the control, ozone stress significantly increased N, P, K, Mg, Mn, Fe, Cu and Zn concentrations of rice straw in a range of 5% to 42%, but had no effect on Ca concentration. In the contrast, the uptake of N, P, K, Ca, Mg, Fe, Cu and Zn in rice straw were significantly 11% to 34% lower under high ozone concentration. In most cases, the ozone-induced changes in element concentrations and uptake were greater in stems than in leaves. In line with this, ozone stress increased element allocation to leaves but decreased that in stems, resulting in significant increases in the leaf to stem ratios(32% to 92%). There were barely interactions between ozone and rice sensitivity types for element concentrations or allocation in leaves and stems, but significant interactions were found for element uptake. The sensitive rice culltivars showed greater ozone-induced inhibition of element uptake. These results indicate that 100 nL·L-1 ozone have profound impacts on the element concentration, uptake and allocation of rice organs, and that the responses of plant element uptake to ozone stress are significantly affected by rice sensitivity to ozone.
HTML    查看全文   查看/发表评论  下载PDF阅读器