文章摘要
尹英杰,朱司航,徐东昊,楚龙港,陈冲,赵晶晶,商建英.生物炭和乙醇改性生物炭对铜的吸附研究[J].农业环境科学学报,2017,36(9):1877-1883.
生物炭和乙醇改性生物炭对铜的吸附研究
Comparison of copper adsorption onto wheat biochar and ethanol-modified biochar
投稿时间:2017-03-03  
DOI:10.11654/jaes.2017-0269
中文关键词: 小麦秸秆  生物炭  Cu2+  吸附平衡  接触角
英文关键词: wheat straw  biochar  Cu2+  adsorption equilibrium  contact angle
基金项目:国家自然科学基金项目(41501232);国家级创新训练项目(201610019027)
作者单位E-mail
尹英杰 中国农业大学资源与环境学院, 北京 100193  
朱司航 中国农业大学资源与环境学院, 北京 100193
教育部植物-土壤相互作用重点实验室, 北京 100193
农业部华北耕地保育重点实验室, 北京 100193 
 
徐东昊 中国农业大学资源与环境学院, 北京 100193  
楚龙港 中国农业大学资源与环境学院, 北京 100193  
陈冲 中国农业大学资源与环境学院, 北京 100193
教育部植物-土壤相互作用重点实验室, 北京 100193
农业部华北耕地保育重点实验室, 北京 100193 
 
赵晶晶 中国农业大学资源与环境学院, 北京 100193
教育部植物-土壤相互作用重点实验室, 北京 100193
农业部华北耕地保育重点实验室, 北京 100193 
 
商建英 中国农业大学资源与环境学院, 北京 100193
教育部植物-土壤相互作用重点实验室, 北京 100193
农业部华北耕地保育重点实验室, 北京 100193 
jyshang@cau.edu.cn 
摘要点击次数: 2216
全文下载次数: 2496
中文摘要:
      为研究生物炭和乙醇改性生物炭的特性及其对铜的吸附能力,选取小麦秸秆为原料,在300、450、600℃条件下热解制备生物炭,用于研究乙醇改性生物炭的产油率、生物炭和乙醇改性生物炭的表面官能团变化、亲水性能及其对Cu2+的吸附特性。结果表明:乙醇改性生物炭产油率随热解温度升高而增加。生物炭和乙醇改性生物炭不同温度接触角范围为122.6°~89.3°和96.0°~68.7°,乙醇改性生物炭亲水性明显高于未经改性生物炭。生物炭和改性生物炭对Cu2+的吸附符合二级动力学模型,生物炭吸附速率常数达1.535 g·mg-1·h-1,乙醇改性生物炭为1.073 g·mg-1·h-1。二者对Cu2+的等温吸附过程符合Langmuir等温吸附模型,生物炭和乙醇改性生物炭最大吸附量分别为44.3 mg·g-1和41.7 mg·g-1,说明使用乙醇萃取生物炭生物质油后,仍能保持90%左右的Cu2+吸附效率。
英文摘要:
      To test the performance of biochar with and without bio-oil for the removal of heavy metals, wheat straw biochars pyrolyzed at three temperatures(300℃, 450℃, and 600℃) were used and then modified by ethanol solution. The ethanol-modified biochars were prepared in 75% ethanol solution for 12 hours to remove bio-oils from the biochars. The characteristics of the raw and ethanol-modified biochars were analyzed, and batch and kinetic adsorption experiments were conducted. The results showed that more bio-oil production rate was obtained using the ethanol-modified biochar pyrolyzed at higher temperature. The contact angle ranges of the raw and ethanol-modified biochars with water were from 122.6° to 89.3° and from 96.0° to 68.7°, respectively, which meant that the ethanol-modified biochars showed less hydrophobicity than the raw biochars did. Ethanol modification had almost no effect on the adsorption rate of the biochar pyrolyzed at 300℃, and decreased the adsorption rate of the raw biochar pyrolyzed at 600℃ by 30%, from 1.535 g·mg-1·h-1 to 1.073 g·mg-1·h-1. Ethanol modification only slightly decreased the maximum adsorption capacity of the biochars pyrolyzed at all three temperatures, as the biochar modified with ethanol still had around 90% adsorption capacity of the biochars without ethanol modification. The copper adsorption processes onto the raw and ethanol-modified biochars were well fitted by second-order kinetics and Langmuir adsorption models.
HTML    查看全文   查看/发表评论  下载PDF阅读器