文章摘要
鲁雨,周丰武,钟文辉,刘丽,李小方,邓欢.采用石墨-无机硅胶复合阳极的土壤MFC产电性能研究[J].农业环境科学学报,2020,39(12):2815-2823.
采用石墨-无机硅胶复合阳极的土壤MFC产电性能研究
Electrical performance of soil microbial fuel cells with a graphite-inorganic silica gel composite anode
投稿时间:2020-06-02  
DOI:10.11654/jaes.2020-0619
中文关键词: 生物电化学  产电细菌  水稻土  新能源  MFC
英文关键词: bioelectrochemistry  exoelectrogenic bacteria  paddy soil  new energy  microbial fuel cells
基金项目:国家自然科学基金项目(41671250);河北省重点研发专项(18273604D);江苏省自然科学基金面上项目(BK20171476)
作者单位E-mail
鲁雨 南京师范大学环境学院, 南京 210023
江苏省物质循环与污染控制重点实验室, 南京 210023 
 
周丰武 南京师范大学地理科学学院, 南京 210023
江苏省物质循环与污染控制重点实验室, 南京 210023 
 
钟文辉 南京师范大学地理科学学院, 南京 210023
江苏省物质循环与污染控制重点实验室, 南京 210023 
 
刘丽 南京师范大学环境学院, 南京 210023
江苏省物质循环与污染控制重点实验室, 南京 210023 
 
李小方 中国科学院遗传与发育生物学研究所农业资源研究中心, 石家庄 050022  
邓欢 南京师范大学环境学院, 南京 210023
江苏省物质循环与污染控制重点实验室, 南京 210023 
hdeng@njnu.edu.cn 
摘要点击次数: 1410
全文下载次数: 1225
中文摘要:
      土壤微生物燃料电池(MFC)可以将土壤产电细菌分解有机质产生的化学能转化为电能。为了提高土壤MFC的产电性能,实现持续稳定驱动小功率用电器,本研究发明一种新型复合材料作为阳极,在水稻土中构建了土壤MFC。通过串联两个土壤MFC,将输出电压维持在1 403.3~1 579.9 mV,实现持续驱动电子计时器稳定运行30 d。之后移除电子计时器进行土壤MFCs的电化学测试。功率密度曲线显示串联土壤MFCs最大功率密度5.45 mW·m-2,最大输出功率158.42 μW。电化学阻抗谱分析表明,单个土壤MFC阳极电荷传递电阻分别为16.46 Ω和16.80 Ω。从阳极表面的土壤样品中提取RNA,对逆转录后的16S rRNA进行测序分析。结果显示,土壤MFCs中,阳极上有14个产电细菌相关属,其中地杆菌属(Geobacter)、芽孢杆菌属(Bacillus)、梭菌属(Clostridium)、假单胞菌属(Pseudomonas)和脱硫球茎菌属(Desulfobulbus)16S rRNA的数量均占所有产电细菌相关属总数的10%以上,为最活跃的产电细菌相关属。
英文摘要:
      Soil microbial fuel cells(MFC)generate electrical energy through the conversion of chemical energy that originates from the decomposition of organic matter by soil exoelectrogenic bacteria. The aim of this study was to improve the electrical performance of soil MFC, so as to utilize them as a new energy source to power electronic devices in situ. A novel composite material containing graphite, carbon felt, and titanium wire was invented as the anode of soil MFC in paddy soil. Two soil MFCs were serially connected to obtain adequate voltage and power output to run an electronic timer. Maximum power density was evaluated using polarization curve, and anodic charge transfer resistance was determined via electrochemical impedance spectroscopy. RNA was extracted from soil samples on the anode surface, and the cDNA produced by reverse transcription of 16S rRNA was sequenced. High-throughput sequencing was used to characterize the diversity and composition of the active exoelectrogenic bacteria-associated genera in the soil. The soil MFCs produced a voltage in the range of 1 403.3~1 579.9 mV and steadily ran the electronic timer for 30 days. Then, the timer was removed to electrochemically test the soil MFCs. The power density curve showed that the maximum power density and output power of the serially-connected soil MFCs were 5.45 mW·m-2 and 158.42 μW, respectively. Electrochemical impedance spectroscopy analysis showed that the anodic charge transfer resistances of the two individual soil MFCs were 16.46 Ω and 16.80 Ω. High-throughput sequencing revealed 14 active exoelectrogenic bacteria-associated genera on the anode. The amount of 16S rRNA generated by Geobacter, Bacillus, Clostridium, Pseudomonas, or Desulfobulbus accounted for more than 10% of all exoelectrogenic bacteria-associated genera, and they were therefore the most active exoelectrogenic bacteria-associated genera.
HTML    查看全文   查看/发表评论  下载PDF阅读器