文章摘要
王时茂,曲婷,胡皓翔,徐肖阳,高晶波,陈竹君,周建斌.陕西秦岭北麓猕猴桃主产区水质动态变化研究[J].农业环境科学学报,2020,39(12):2853-2859.
陕西秦岭北麓猕猴桃主产区水质动态变化研究
Dynamic water quality changes in a kiwifruit production area of the northern Qinling Mountains
投稿时间:2020-06-28  
DOI:10.11654/jaes.2020-0726
中文关键词: 种植模式  秦岭北麓  猕猴桃  水质  硝酸盐  水化学因子
英文关键词: land use  Qinling Mountains  kiwifruit  water quality  nitrate  water chemical factors
基金项目:国家重点研发计划项目(2017YFD0200106);国家自然科学基金项目(41671295)
作者单位E-mail
王时茂 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
曲婷 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
胡皓翔 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
徐肖阳 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
高晶波 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
陈竹君 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
 
周建斌 西北农林科技大学资源环境学院, 陕西 杨凌 712100
农业农村部西北植物营养与农业环境重点实验室, 陕西 杨凌 712100 
jbzhou@nwsuaf.edu.cn 
摘要点击次数: 1725
全文下载次数: 1312
中文摘要:
      为探究陕西秦岭北麓地区集约化猕猴桃生产对地表水及地下水水质的影响,在每月中旬定点监测了2019年度眉县主产区不同土地利用方式(居民区、果园区和自然植被区)下24个地下水(潜水和深水各12个)及8个地表水硝酸盐含量、电导率(EC)及盐基离子含量等。结果表明:自然植被区地表水硝酸盐含量变化平稳,未发现硝酸盐超标现象;而猕猴桃集中产区地下水及地表水硝酸盐超标严重,地表水超标率[>10 mg N·L-1,《地表水环境质量标准》(GB 3838—2002)]为31.82%,潜水位地下水超标率[>10 mg N·L-1,《地下水质量标准》(GB/T 14848—2017)]为93.27%,深水位地下水超标率(>10 mg N·L-1,GB/T 14848—2017)为57.41%。地下水及地表水硝酸盐含量变化与眉县施肥时期变化趋势基本一致,峰值主要出现在6月及11月施肥时期;9月潜水位地下水硝酸盐有明显下降,这与9月长时间的高降雨量有关。猕猴桃集中区地表水及地下水EC、Ca2+、Mg2+及Cl-等离子含量相比居民区与自然植被区也显著增加,其中水体EC与NO3-、Cl-、Ca2+、Mg2+、Na+等离子含量间呈显著的正相关关系。研究表明,秦岭北麓猕猴桃产业的发展显著增加了地表水的硝酸盐含量,导致当地水质恶化。
英文摘要:
      To explore the effects of intensive kiwifruit production on the quality of surface-and groundwater in the northern piedmont of the Qinling Mountains, Shaanxi, a total of 32 samples[8 from surface water and 24 from well water(12 from shallow well at depth 2~18 m and 12 from deep well at depth >100 m)] were collected from different land use types, such as orchards, residential areas, and natural vegetation areas, during different months. The measured water quality indices included electrical conductivity(EC)and potassium(K+), sodium(Na+), calcium(Ca2+), magnesium(Mg2+), chlorine(Cl-), and sulfate(SO42-)contents. The results showed that changes to surface water nitrate content were slower in natural vegetation areas and did not exceed the standard limit. However, groundwater and surface water nitrate contents considerably exceeded the standard in kiwifruit production areas, as around 31.82% of surface water samples[>10 mg N·L-1, quality standard for surface water(GB 3838-2002)], 93.27% of groundwater samples, and 57.41% of deep groundwater samples exceeded their respective standard limits[>10 mg N·L-1, quality for ground water(GB/T 14848-2017)]. The changes in groundwater and surface water nitrate contents were essentially consistent with the changes in fertilization practices, and nitrate content generally peaked during the fertilization periods in June and November. The shallow groundwater nitrate content significantly declined in September, which was consistent with the long-term high rainfall observed in September. The surface water and groundwater EC, Ca2+, Mg2+, and Cl- contents were also significantly increased in kiwifruit production areas. In addition, there were significant positive correlations between EC and NO3-, Cl-, Ca2+, Mg2+, and Na+ contents. The issue of excessive groundwater nitrate in the main kiwifruit production area in the northern foothills of the Qinling Mountains, Shaanxi is severe, and effective measures should be implemented to solve this problem.
HTML    查看全文   查看/发表评论  下载PDF阅读器